Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sens Actuators A Phys ; 349: 114052, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36447950

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been garnered increasing for its rapid worldwide spread. Each country had implemented city-wide lockdowns and immigration regulations to prevent the spread of the infection, resulting in severe economic consequences. Materials and technologies that monitor environmental conditions and wirelessly communicate such information to people are thus gaining considerable attention as a countermeasure. This study investigated the dynamic characteristics of batteryless magnetostrictive alloys for energy harvesting to detect human coronavirus 229E (HCoV-229E). Light and thin magnetostrictive Fe-Co/Ni clad plate with rectification, direct current (DC) voltage storage capacitor, and wireless information transmission circuits were developed for this purpose. The power consumption was reduced by improving the energy storage circuit, and the magnetostrictive clad plate under bending vibration stored a DC voltage of 1.9 V and wirelessly transmitted a signal to a personal computer once every 5 min and 10 s under bias magnetic fields of 0 and 10 mT, respectively. Then, on the clad plate surface, a novel CD13 biorecognition layer was immobilized using a self-assembled monolayer of -COOH groups, thus forming an amide bond with -NH2 groups for the detection of HCoV-229E. A bending vibration test demonstrated the resonance frequency changes because of HCoV-229E binding. The fluorescence signal demonstrated that HCoV-229E could be successfully detected. Thus, because HCoV-229E changed the dynamic characteristics of this plate, the CD13-modified magnetostrictive clad plate could detect HCoV-229E from the interval of wireless communication time. Therefore, a monitoring system that transmits/detects the presence of human coronavirus without batteries will be realized soon.

2.
Anal Chem ; 94(25): 8857-8866, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35700401

RESUMEN

In this study, a carbon paste filling method was proposed as a simple strategy for fabricating high-density bipolar electrode (BPE) arrays for bipolar electrochemical microscopy (BEM). High spatiotemporal resolution imaging was achieved using the fabricated BPE array. BEM, which is an emerging microscopic system in recent years, achieves label-free and high spatiotemporal resolution imaging of molecular distributions using high-density BPE arrays and electrochemiluminescence (ECL) signals. We devised a simple method to fabricate a BPE array by filling a porous plate with carbon paste and succeeded in fabricating a high-density BPE array (15 µm pitch). After a detailed observation of the surface of the BPE array using a scanning electron microscope, the basic electrochemical and ECL emission characteristics were evaluated using potassium ferricyanide solution as a sample solution. Moreover, inflow imaging of the sample molecules was conducted to evaluate the imaging ability of the prepared BPE array. In addition, Prussian Blue containing carbon ink was applied to the sample solution side of the BPE array to provide catalytic activity to hydrogen peroxide, and the quantification and inflow imaging of hydrogen peroxide by ECL signals was achieved. This simple fabrication method of the BPE array can accelerate the research and development of BEM. Furthermore, hydrogen peroxide imaging by BEM is an important milestone for achieving bioimaging with high spatiotemporal resolution such as biomolecule imaging using enzymes.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Carbono , Técnicas Electroquímicas/métodos , Electrodos , Peróxido de Hidrógeno/química , Mediciones Luminiscentes/métodos
3.
Anal Chem ; 94(36): 12427-12434, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36027565

RESUMEN

Here, we report a highly sensitive immunoassay for human immunoglobulin G (IgG) that uses signal amplification of the coagulation cascade. Z-Phe-Pro-Lys-p-nitroaniline (FPK-pNA) was used as a substrate for thrombin activation in the last step of the coagulation cascade. During the coagulation cascade, pNA is liberated from FPK-pNA and can be detected electrochemically. Using square wave voltammetry with a glassy carbon electrode, we demonstrated that pNA can be quantified in a solution modeling the coagulation cascade prepared by mixing FPK-pNA and pNA. Characterization of the reactivity of thrombin toward FPK-pNA revealed that thrombin efficiently reacted with FPK-pNA. Subsequent characterization of factor XIa activity of factor XIa-labeled antibody revealed that factor XIa was not inactivated during labeling. Finally, a coagulation cascade-based immunoassay for human IgG was performed using a factor XIa-labeled antibody on magnetic beads. The limit of detection for human IgG was 5.0 pg/mL (33 fM) indicating that the coagulation cascade can amplify the immunoassay sensitivity compared to immunoassay using a thrombin-labeled antibody as a condition without a coagulation cascade. Coagulation cascade-based immunoassay was also highly selective. In the near future, we will report a highly sensitive immunoassay for the simultaneous detection of multiple analytes using a coagulation cascade-based immunoassay and Limulus amebocyte lysate reaction-based immunoassay we previously reported.


Asunto(s)
Coagulación Sanguínea , Trombina , Electrodos , Humanos , Inmunoensayo , Inmunoglobulina G
4.
Analyst ; 145(21): 6895-6900, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32820751

RESUMEN

In this study, we developed bipolar electrochemical microscopy (BEM) using a closed bipolar electrode (cBPE) array with an electrochemiluminescence (ECL) detecting system. Because cBPEs are not directly connected to a detector, high spatio-temporal resolution imaging can be achieved by fabricating a microelectrode array in which each electrode point is arranged in a short interval. A cBPE array with individual cBPEs arranged in 41 µm intervals was successfully fabricated by depositing gold in the pores of a track-etched membrane using electroless plating. Using BEM with the cBPE array, which has a higher density of electrode points than the conventional multi-electrode array, we effectively demonstrated the imaging of [Fe(CN)6]3- diffusion and the respiratory activity of MCF-7 spheroids with high spatio-temporal resolution.

5.
Analyst ; 144(11): 3659-3667, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31074478

RESUMEN

We report a highly sensitive and rapid electrochemical method for the detection of endotoxin, based on a Limulus amebocyte lysate (LAL) assay using redox cycling at a pair of electrodes in a nanocavity for electrochemical signal amplification. We have previously developed Boc-Leu-Gly-Arg-p-aminophenol (LGR-pAP) as a substrate for the amperometric LAL assay, and in this work, Z-Leu-Gly-Arg-aminomethylferrocene (LGR-AMF) was newly prepared. They were examined as substrates for a LAL-based endotoxin assay using a nanocavity device. During the last step of the endotoxin-induced LAL cascade reaction, pAP or AMF is generated from the substrate, which can be detected electrochemically with efficient signal amplification by redox cycling between the two electrodes in the nanocavity. A device with a 190 nm-high nanocavity was fabricated by photolithography. With the fabricated device in model assay solutions prepared by mixing LGR-pAP and pAP, we demonstrated that pAP could be quantitatively detected from the difference in oxidation potentials between LGR-pAP and pAP. For LGR-AMF and AMF, a difference in the formal potential of 0.1 V was obtained which was considered to be insufficient to distinguish AMF from LGR-AMF. However, we showed for the first time that analytes such as AMF can be detected by differences in diffusion coefficients between the analyte and coexisting molecules (such as LGR-AMF) using a device with high redox-cycling efficiency. Next, the endotoxin assay was performed using the fabricated nanocavity device. Using this method, endotoxin was detected at concentrations as low as 0.2 and 0.5 EU L-1 after LAL reaction times of 1 h and 30 min, respectively, using the LGR-pAP substrate. However, the endotoxin assay using LGR-AMF was not successful because the clotting enzyme did not react with LGR-AMF. This problem might be solved by further design of the substrate. Our nanocavity device represents an effective platform for the simple and rapid detection of endotoxin with high sensitivity.


Asunto(s)
Endotoxinas/análisis , Nanoestructuras/química , Aminofenoles/química , Animales , Proteínas de Artrópodos/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Endopeptidasas/química , Endotoxinas/química , Precursores Enzimáticos/química , Diseño de Equipo , Compuestos Ferrosos/química , Cangrejos Herradura/enzimología , Oligopéptidos/química , Oxidación-Reducción , Platino (Metal)/química , Serina Endopeptidasas/química , Titanio/química
6.
Anal Chem ; 89(23): 12778-12786, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29090905

RESUMEN

Multiplexed bioimaging systems have triggered the development of effective assays, contributing new biological information. Although electrochemical imaging is beneficial for quantitative analysis in real time, monitoring multiple cell functions is difficult. We have developed a novel electrochemical imaging system, herein, using a large-scale integration (LSI)-based amperometric device for detecting multiple biomolecules simultaneously. This system is designated as an electrochemicolor imaging system in which the current signals from two different types of biomolecules are depicted as a multicolor electrochemical image. The mode-selectable function of the 400-electrode device enables the imaging system and two different potentials can be independently applied to the selected electrodes. The imaging system is successfully applied for detecting multiple cell functions of the embryonic stem (ES) cell and the rat pheochromocytoma (PC12) cell aggregates. To the best of our knowledge, this is the first time that a real-time electrochemical mapping technique for multiple electroactive species, simultaneously, has been reported. The imaging system is a promising bioanalytical method for exploring complex biological phenomena.


Asunto(s)
Bioensayo/métodos , Técnicas Electroquímicas/métodos , Fosfatasa Alcalina/metabolismo , Animales , Respiración de la Célula/fisiología , Dopamina/metabolismo , Células Madre Embrionarias , Glucosa Oxidasa/metabolismo , Ratones , Oxidación-Reducción , Células PC12 , Ratas
7.
Angew Chem Int Ed Engl ; 56(24): 6818-6822, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28471045

RESUMEN

Motion tracking of microorganisms is useful to investigate the effects of chemical or physical stimulation on their biological functions. Herein, we describe a novel electrochemical imaging method for motion tracking of microorganisms using a large-scale integration (LSI)-based amperometric device. The device consists of 400 electrochemical sensors with a pitch of 250 µm. A convection flow caused by the motion of microorganisms supplies redox species to the sensors and increases their electrochemical responses. Thus, the flow is converted to electrochemical signals, enabling the electrochemical motion tracking of the microorganisms. As a proof of concept, capillary vibration was monitored. Finally, the method was applied to monitoring the motion of Daphnia magna. The motions of these microorganisms were clearly tracked based on the electrochemical oxidation of [Fe(CN)6 ]4- and reduction of O2 .


Asunto(s)
Daphnia/fisiología , Técnicas Electroquímicas/instrumentación , Movimiento (Física) , Movimiento/fisiología , Animales , Diseño de Equipo , Ferricianuros/química , Oxidación-Reducción , Oxígeno/análisis , Oxígeno/química , Prueba de Estudio Conceptual , Vibración
8.
Anal Chem ; 87(12): 6364-70, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25971414

RESUMEN

In the present study, we used a large-scale integration (LSI)-based amperometric sensor array system, designated Bio-LSI, to image dopamine release from three-dimensional (3D)-cultured PC12 cells (PC12 spheroids). The Bio-LSI device consists of 400 sensor electrodes with a pitch of 250 µm for rapid electrochemical imaging of large areas. PC12 spheroids were stimulated with K(+) to release dopamine. Poststimulation dopamine release from the PC12 spheroids was electrochemically imaged using the Bio-LSI device. Bio-LSI clearly showed the effects of the dopaminergic drugs l-3,4-dihydroxyphenylalanine (L-DOPA) and reserpine on K(+)-stimulated dopamine release from PC12 spheroids. Our results demonstrate that dopamine release from PC12 spheroids can be monitored using the device, suggesting that the Bio-LSI is a promising tool for use in evaluating 3D-cultured dopaminergic cells and the effects of dopaminergic drugs. To the best of our knowledge, this report is the first to describe electrochemical imaging of dopamine release by PC12 spheroids using LSI-based amperometric sensors.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Dopamina/análisis , Dopamina/metabolismo , Técnicas Electroquímicas/métodos , Animales , Técnicas Electroquímicas/instrumentación , Electrodos , Células PC12 , Ratas , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
9.
Anal Chem ; 86(10): 4723-8, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24798487

RESUMEN

This paper reports a novel approach for the simple detection of cell apoptosis using an electrochemical technique. This method uses caspase-3 activity as an indicator of apoptosis. Caspase-3 activity was detected with differential plus voltammetry (DPV) as an alternative to conventional spectrometry. In this method, p-nitroaniline (pNA) released from Asp-Glu-Val-Asp-pNA by caspase-3 enzyme reaction was measured with DPV by using a glassy carbon electrode. Using this method, we successfully detected cell apoptosis occurring inside living HepG2 cells without the need for a cell lysis step. This method provides an easy assay procedure and, more importantly, allows a live cell apoptosis detection format. This novel electrochemical apoptosis assay using living cells instead of typically used cell lysates will expand the applicable range of the apoptosis assay to include cell activity assays for drug discovery and cell transplantation medicine.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Anilidas , Caspasa 3/análisis , Línea Celular Tumoral , Electroquímica , Electrodos , Humanos , Oligopéptidos
10.
Analyst ; 139(19): 5001-6, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25096015

RESUMEN

We have developed a novel method for detection of endotoxin with extra-high sensitivity by using substitutional stripping voltammetry (SSV). In this method, a p-aminophenol (pAP) conjugated peptide (Boc-Leu-Gly-Arg-pAP; LGR-pAP) was used as a substrate for a protease, which is activated at the last step of the endotoxin-induced Limulus amebocyte lysate (LAL) cascade reaction. Extra-highly sensitive detection of pAP liberated by the endotoxin-induced LAL reaction was successfully realized with SSV, based on the accumulation of an amperometric signal owing to exchange of the oxidation current of pAP generated at an electrode in a reaction cell with silver deposition on another electrode in a deposition cell. This reaction is driven by the difference in the redox potential between pAP/quinoneimine and silver/silver ion. The amount of the deposited silver is quantified by anodic stripping voltammetry (ASV). This SSV-based endotoxin assay was performed with a chip device comprising two cells, each of which was connected via a liquid junction made of Vycor® glass. The reaction cell and the deposition cell contained a standard endotoxin sample with LAL regents containing LGR-pAP and AgNO3 solution, respectively. After the cells were electrically connected for 60 min, ASV was conducted in the deposition cell to quantify the total electrical charge derived by the oxidation of free pAP in the reaction cell. The ASV signal increased with the increase of the endotoxin concentration in the sample solution in the range of 0.5-1000 EU L(-1).


Asunto(s)
Técnicas Electroquímicas , Endotoxinas/análisis , Secuencia de Aminoácidos , Aminofenoles/química , Electrodos , Endotoxinas/metabolismo , Oxidación-Reducción , Péptido Hidrolasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Quinonas/química , Plata/química , Especificidad por Sustrato
11.
Talanta ; 278: 126509, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39003839

RESUMEN

Bipolar electrochemical microscopy (BEM), which visualizes the concentration distribution of molecular species in biological systems by electrochemiluminescence (ECL), is expected to be applied to the high-spatiotemporal-resolution imaging of biomolecules, enabling the analysis of cellular functions. In the past, the molecular species that could be imaged by BEM were generally restricted to oxidized molecules due to the limitation derived from the ECL mechanism of the luminophore. Recently, the imaging of dopamine (DA), a reduced molecule, was achieved using Ru (bpy)32+/glutathione disulfide (GSSG) as a cathodic luminophore. However, a large driving voltage was required for ECL generation, resulting in a low S/N ratio. In this study, we employed N,N'-dimethyl-3,4,9,10-perylenetetracarboxylic diimide (PDI-CH3)/potassium peroxodisulfate (K2S2O8), which is a cathodic luminophore that can be reduced at a nobler potential to produce ECL than [Ru(bpy)3]2+/GSSG. First, the ECL mechanism of PDI-CH3/K2S2O8 was elucidated by using a PDI-CH3 drop-cast glassy carbon electrode (GCE) immersed in K2S2O8 solution as the working electrode in a 3-electrode system. The PDI-CH3 drop-casted GCE, a single closed bipolar electrode (c-BPE), was used as the cathode in the successful quantification of 50-500 µmol L-1 DA in a sample chamber in which a c-BPE anode was immersed, resulting in a high S/N. The selective detection of DA in the presence of ascorbic acid was achieved by modifying the anode with Nafion. Finally, DA imaging was demonstrated using a commercially available anisotropic conducting film with PDI-CH3 coating on the cathode surface as a c-BPE array. The change in the concentration distribution in the inflow of DA was successfully imaged based on the change in the ECL intensity at the c-BPE cathode. This BEM system is expected to be useful for DA imaging of the brain.


Asunto(s)
Dopamina , Técnicas Electroquímicas , Electrodos , Imidas , Perileno , Dopamina/análisis , Dopamina/química , Perileno/química , Perileno/análogos & derivados , Imidas/química , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Sulfatos/química , Sulfatos/análisis , Compuestos de Potasio
12.
Analyst ; 138(21): 6523-31, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23978902

RESUMEN

We developed a novel protease detection method based on amperometry using a p-aminophenol (pAP) conjugated substrate. We prepared Boc-Leu-Gly-Arg-pAP (LGR-pAP) as a novel substrate for a clotting enzyme, which is a protease activated by an endotoxin-induced Limulus amebocyte lysate (LAL) cascade reaction. The basic study using cyclic voltammetry revealed that the oxidation peak potentials of LGR-pAP and pAP were sufficiently separated from each other (0.25 V) to conduct amperometric detection of protease activity. We combined simple amperometric detection with a screen-printed electrode chip to produce a practical protease sensor. As an application of the sensor, we demonstrated quantitative endotoxin sensing. The endotoxin activated zymogens contained in the LAL to generate pAP, which was then electrochemically detected by potential step chronoamperometry (PSCA). The observed oxidation current increased with the concentration of endotoxin in the LAL assay solution. This PSCA detection was performed with a disposable chip sensor consisting of a screen-printed electrode and a fluidic channel with a hydrophilic cover. This chip sensor successfully detected 10-1000 EU L(-1) endotoxin within 60 min. This novel amperometric measurement with a screen-printed electrode not only provides compact, low-cost, and easy-to-use sensors for on-site monitoring of endotoxin, but also shows promise for use in other in vitro protease assays for biochemical research, diagnosis, and drug development.


Asunto(s)
Aminofenoles/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Endotoxinas/química , Péptido Hidrolasas/análisis , Aminofenoles/metabolismo , Animales , Endotoxinas/metabolismo , Cangrejos Herradura , Péptido Hidrolasas/metabolismo , Especificidad por Sustrato/fisiología
13.
Micromachines (Basel) ; 14(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36838027

RESUMEN

The Limulus amebocyte lysate (LAL) reaction-based assay, the most commonly used endotoxin detection method, requires a skilled technician. In this study, to develop an easy-to-use and highly sensitive endotoxin sensor, we created an electrochemical endotoxin sensor by using an interdigitated array electrode (IDAE) device with advantages of amplifiable signals via redox cycling and portability. We added Boc-Leu-Gly-Arg-p-aminophenol (LGR-pAP) as an electrochemical substrate for an LAL reaction and detected p-aminophenol (pAP) released from LGR-pAP as a product of an endotoxin-induced LAL reaction via an IDAE device. The IDAE device showed a great redox cycling efficiency of 79.8%, and a 4.79-fold signal amplification rate. Then, we confirmed that pAP was detectable in the presence of LGR-pAP through chronoamperometry with the potential of the anode stepped from -0.3 to 0.5 V vs. Ag/AgCl while the cathode was biased at -0.3 V vs. Ag/AgCl. Then, we performed an endotoxin assay by using the IDAE device. Our endotoxin sensor detected as low as 0.7 and 1.0 endotoxin unit/L after the LAL reaction for 1 h and 45 min, respectively, and these data were within the cut-off value for ultrapure dialysis fluid. Therefore, our highly sensitive endotoxin sensor is useful for ensuring medical safety.

14.
Anal Chem ; 84(18): 7593-8, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22934980

RESUMEN

We propose a novel electrochemical detection system for alkaline phosphatase (ALP) activity using the difference in water and oil solubilities between the substrate, ferrocene ethyl phosphate ester (FcEtOPO(3)(2-)), and the enzymatic product, ferroceneethanol (FcEtOH). In this system, water droplets containing ALP and FcEtOPO(3)(2-) were placed on a Pt disk microelectrode and surrounded by a mineral oil. By the ALP-catalyzed reaction, FcEtOPO(3)(2-) was converted to FcEtOH, which was then transferred to the mineral oil from the water droplets with FcEtOPO(3)(2-) remaining in the water droplets. After partitioning FcEtOH from the water droplets, FcEtOPO(3)(2-) was detected at the Pt disk microelectrode to estimate the ALP activity. Using this novel system, the ALP activity of embryoid bodies was successfully detected. We believe that the present system will be widely applicable to ALP-based bioassays.


Asunto(s)
Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/metabolismo , Técnicas Electroquímicas , Animales , Electrodos , Células Madre Embrionarias/enzimología , Ésteres , Etanol/química , Compuestos Ferrosos/química , Metalocenos , Ratones , Aceite Mineral/química , Platino (Metal)/química , Solubilidad , Agua/química
15.
Micromachines (Basel) ; 11(5)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32456040

RESUMEN

Mammalian cell analysis is essential in the context of both fundamental studies and clinical applications. Among the various techniques available for cell analysis, electrochemiluminescence (ECL) has attracted significant attention due to its integration of both electrochemical and spectroscopic methods. In this review, we summarize recent advances in the ECL-based systems developed for mammalian cell analysis. The review begins with a summary of the developments in luminophores that opened the door to ECL applications for biological samples. Secondly, ECL-based imaging systems are introduced as an emerging technique to visualize single-cell morphologies and intracellular molecules. In the subsequent section, the ECL sensors developed in the past decade are summarized, the use of which made the highly sensitive detection of cell-derived molecules possible. Although ECL immunoassays are well developed in terms of commercial use, the sensing of biomolecules at a single-cell level remains a challenge. Emphasis is therefore placed on ECL sensors that directly detect cellular molecules from small portions of cells or even single cells. Finally, the development of bipolar electrode devices for ECL cell assays is introduced. To conclude, the direction of research in this field and its application prospects are described.

16.
Sci Rep ; 9(1): 12234, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439857

RESUMEN

The light-driven splitting of water to oxygen (O2) is catalyzed by a protein-bound tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster in Photosystem II. In the current study, we used a large-scale integration (LSI)-based amperometric sensor array system, designated Bio-LSI, to perform two-dimensional imaging of light-induced O2 evolution from spinach leaves. The employed Bio-LSI chip consists of 400 sensor electrodes with a pitch of 250 µm for fast electrochemical imaging. Spinach leaves were illuminated to varying intensities of white light (400-700 nm) which induced oxygen evolution and subsequent electrochemical images were collected using the Bio-LSI chip. Bio-LSI images clearly showed the dose-dependent effects of the light-induced oxygen release from spinach leaves which was then significantly suppressed in the presence of urea-type herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Our results clearly suggest that light-induced oxygen evolution can be monitored using the chip and suggesting that the Bio-LSI is a promising tool for real-time imaging. To the best of our knowledge, this report is the first to describe electrochemical imaging of light-induced O2 evolution using LSI-based amperometric sensors in plants.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oxígeno/metabolismo , Fotosíntesis , Spinacia oleracea/química , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Spinacia oleracea/metabolismo
17.
Biotechnol J ; 11(6): 838-42, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27150897

RESUMEN

Electrochemical imaging is an excellent technique to characterize an activity of biomaterials, such as enzymes and cells. Large scale integration-based amperometric sensor (Bio-LSI) has been developed for the simultaneous and continuous detection of the concentration distribution of redox species generated by reactions of biomolecules. In this study, the Bio-LSI system was demonstrated to be applicable for simultaneous detection of different anaytes in multiple specimens. The multiple specimens containing human immunoglobulin G (hIgG) and mouse IgG (mIgG) were introduced into each channel of the upper substrate across the antibody lines for hIgG and mIgG on the lower substrate. Hydrogen peroxide generated by the enzyme reaction of glucose oxidase captured at intersections was simultaneously detected by 400 microelectrodes of Bio-LSI chip. The oxidation current increased with increasing the concentrations of hIgG, which can be detected in the range of 0.01-1.0 µg mL(-1) . Simultaneous detection of hIgG and mIgG in multiple specimens was achieved by using line pattern of both antibodies. Therefore, the presence of different target molecules in the multiple samples would be quantitatively and simultaneously visualized as a current image by the Bio-LSI system.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Glucosa Oxidasa/metabolismo , Peróxido de Hidrógeno/análisis , Inmunoglobulina G/análisis , Animales , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/química , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Microelectrodos , Especificidad de la Especie
18.
Front Physiol ; 7: 109, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065878

RESUMEN

All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS). The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2) detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques.

19.
Biosens Bioelectron ; 77: 709-14, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26499066

RESUMEN

This paper describes potentiometric bioimaging for enzyme activity using a large-scale integration (LSI)-based electrochemical device with 400 sensors. Potentiometric detection is useful for bioimaging because redox species are not consumed or produced during the detection process; therefore, there is no effect on cell activity and the detectable signal is sustained. In this study, the potentiometer mode of the LSI-based device was applied for the detection of glucose oxidase (GOx) and alkaline phosphatase (ALP) activity. The enzyme activities were quantitatively detected within the concentration ranges of 25-250 µg/mL and 0.10-5.0 ng/mL. In addition, GOx activity in hydrogels and the ALP activity of embryoid bodies (EBs) from embryonic stem (ES) cells were successfully imaged based on detection of the open circuit potentials of individual sensors in real time. To the best of our knowledge, this is the first report of potentiometric imaging using LSI-based electrochemical arrays to detect enzyme activity in ES cells. The LSI-based device is thus demonstrated to be a promising tool for bioimaging of enzyme activity.


Asunto(s)
Conductometría/instrumentación , Células Madre Embrionarias/enzimología , Enzimas/metabolismo , Imagen Molecular/instrumentación , Potenciometría/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Animales , Células Cultivadas , Activación Enzimática , Diseño de Equipo , Análisis de Falla de Equipo , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Integración de Sistemas
20.
Anal Sci ; 31(7): 715-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26165297

RESUMEN

In the present study, we monitored the alkaline phosphatase (ALP) activity of embryoid bodies (EBs) of mouse embryonic stem (ES) cells using a large-scale integration (LSI)-based amperometric device with 400 sensors and a pitch of 250 µm. In addition, a simulation analysis was performed to reveal the positional relationship between the EBs and the sensor electrodes toward more precise measurements. The study shows that simulation analysis can be applied for precise electrochemical imaging of three-dimensionally cultured cells by normalization of the current signals.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Electroquímica/instrumentación , Cuerpos Embrioides/metabolismo , Modelos Biológicos , Animales , Agregación Celular , Ratones , Oxidación-Reducción , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda