Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Poult Sci ; 53(3): 213-219, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32908386

RESUMEN

The skeletal muscle mass is known to be controlled by the balance between protein synthesis and degradation. The fractional rate of protein synthesis has been reported to decrease age-dependently from 1 to 4 weeks of age in the chicken breast muscle (pectoralis major muscle). On the other hand, age-dependent change of the fractional protein degradation rate was reported to be less in the skeletal muscle of chickens. These findings suggest that protein synthesis is age-dependently downregulated in chicken muscle. We herein investigated the age-dependent changes in protein synthesis or proteolysis-related factors in the breast muscle of 7, 14, 28, and 49-day old broiler chickens. IGF-1 mRNA level, phosphorylation rate of Akt, and phospho-S6 content were coordinately decreased in an age-dependent manner, suggesting that IGF-1-stimulated protein synthesis is downregulated with age in chicken breast muscle. In contrast, atrogin-1, one of the proteolysis-related factors, gradually increased with age at mRNA levels. However, plasma N τ -methylhistidine concentration, an indicator of skeletal muscle proteolysis, did not coordinately change with atrogin-1 mRNA levels. Taken together, our results suggest that the IGF-1/Akt/S6 signaling pathway is age-dependently downregulated in the chicken breast muscle.

2.
Artículo en Inglés | MEDLINE | ID: mdl-25899861

RESUMEN

Genetic selection results in a higher growth rate and meat yield in broiler chickens than in layer chickens. We herein demonstrated differences in the effects of 24 h of fasting on the expression of genes involved in skeletal muscle proteolysis between broiler and layer chicks. The mRNA levels of proteolysis-related genes were analyzed in the pectoralis major muscle of 14-day-old chicks after 0 or 24 h of fasting. The mRNA levels of ubiquitin ligases such as atrogin-1 and muscle RING finger-1 (MuRF-1) as well as transcription factor forkhead box class O (FOXO) 1 were significantly increased by fasting in broiler and layer chicks, suggesting that the FOXO1-induced ubiquitin-proteasome system, a major proteolytic system in skeletal muscles, was activated by fasting in both chicks. The mRNA levels of atrogin-1 were significantly lower in broiler chicks than in layer chicks after fasting. Furthermore, the mRNA levels of insulin-like growth factor-1 were significantly decreased by fasting in layer chicks, but not in broiler chicks. The mRNA levels of FOXO3 were significantly increased by fasting in layer chicks, but not in broiler chicks. Therefore, the ubiquitin-proteasome system did not appear to have been fully upregulated in broiler chicks. These results suggest that differences in the expression of genes related to the ubiquitin-proteasome system in skeletal muscle proteolysis between broiler and layer chicks during food deprivation are one of the causes of the high growth rate in broiler chickens.


Asunto(s)
Pollos/metabolismo , Privación de Alimentos , Expresión Génica , Músculos Pectorales/metabolismo , Proteolisis , ARN Mensajero/metabolismo , Animales , Proteínas Aviares/metabolismo , Pollos/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-26188321

RESUMEN

The regulatory mechanisms of carbohydrate and lipid metabolism are known to differ among skeletal muscle types in mammals. For example, glycolytic muscles prefer glucose as an energy source, whereas oxidative muscles prefer fatty acids (FA). We herein demonstrated differences in the expression of genes involved in carbohydrate and lipid metabolism in the pectoralis major (a glycolytic twitch muscle), adductor superficialis (an oxidative twitch muscle), and adductor profound (a tonic muscle) of 14-day-old chicks. Under ad libitum feeding conditions, the mRNA levels of muscle type phosphofructokinase-1 were markedly lower in the adductor superficialis muscle, suggesting that basal glycolytic activity is very low in this type of muscle. In contrast, high mRNA levels of lipoprotein lipase (LPL) and fatty acid translocase/cluster of differentiation 36 (FAT/CD36) in the adductor superficialis muscle suggest that FA uptake is high in this type of muscle. The mRNA levels of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase 1b (CPT1b) were significantly higher in the adductor profound muscle than in other muscles, suggesting that basal lipolytic activity is high in this type of muscle. Furthermore, the mRNA levels of peroxisome proliferator activated receptor δ and CPT1b were significantly increased in the adductor superficialis muscle, but not in other muscles, after 24h of fasting. Therefore, the availability of FA in the oxidative twitch muscles in growing chickens appears to be upregulated by fasting. Our results suggest that lipid metabolism-related genes are upregulated under both basal and fasting conditions in the adductor superficialis in growing chickens.


Asunto(s)
Pollos/crecimiento & desarrollo , Pollos/metabolismo , Regulación de la Expresión Génica , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Alimentación Animal , Animales , Metabolismo de los Hidratos de Carbono , Pollos/genética , Ayuno/metabolismo , Masculino , ARN Mensajero/metabolismo
4.
Anim Sci J ; 85(5): 562-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24612277

RESUMEN

The utilization of copra meal as a feed ingredient is limited because it contains a high level of mannan. However, recent findings indicate that the effect of copra meal on growth performance in broiler chickens can be improved by the supplementation of mannanase in the diet. In the present study, we examined the effect of mannanase-hydrolyzed copra meal (MCM) on growth performance and muscle protein metabolism in growing broiler chickens (Gallus gallus domesticus). Forty 8-day-old male broiler chicks were assigned to two groups (four birds in each pen, five replicates) and fed either a commercial diet (as a control diet) or a diet containing MCM at 0.2% until 22 days of age. Dietary MCM significantly increased the weights of body, breast muscle, and thighs in chickens, whereas the weights of abdominal adipose tissue and liver were not affected. Cumulative feed intake was significantly increased by MCM. Dietary MCM significantly decreased plasma 3-methylhistidine level. The messenger RNA and protein levels of muscle protein metabolism-related factors were not altered by MCM. These findings suggest that the growth-promoting effect of MCM is related to the suppression of muscle proteolysis in growing broiler chickens.


Asunto(s)
Alimentación Animal , Pollos/fisiología , Mananos/metabolismo , Desarrollo de Músculos/fisiología , Animales , Pollos/crecimiento & desarrollo , Hidrólisis , Masculino , Proteínas Musculares/metabolismo , Tamaño de los Órganos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda