RESUMEN
Schiff bases of existing antimicrobial drugs are an area, which is still to be comprehensively explored to improve drug efficiency against consistently resisting bacterial species. In this study, we have targeted a new and eco-friendly method of condensation reaction that allows the "green synthesis" as well as improved biological efficacy. The transition metal complexes of cefpodoxime with well-enhanced biological activities were synthesized. The condensation reaction product of cefpodoxime and vanillin was further reacted with suitable metal salts of [Mn (II), Cu (II), Fe (II), Zn (II), and Ni (II)] with 1:2 molar ratio (metal: ligand). The characterization of all the products were carried out by using UV-Visible, elemental analyzer, FTIR, 1H-NMR, ICP-OES, and LC-MS. Electronic data obtained by UV-Visible proved the octahedral geometry of metal complexes. The biological activities Schiff base ligand and its transition metal complexes were tested by using in-vitro anti-bacterial analysis against various Gram-negative, as well as Gram-positive bacterial strains. Proteinase and protein denaturation inhibition assays were utilized to evaluate the products in-vitro anti-inflammatory activities. The in vitro antioxidant activity of the ligand and its complexes was evaluated by utilizing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) in-vitro method. The final results proved metal complexes to be more effective against bacterial microorganisms as compared to respective parent drug as well as their free ligands. Patch Dock, a molecular docking tool, was used to dock complexes 1a-5e with the crystal structure of GlcN-6-P synthase (ID: 1MOQ). According to the docking results, complex 2b exhibited a highest score (8,882; ACE = -580.43 kcal/mol) that is well correlated with a high inhibition as compared to other complexes which corresponds to the antibacterial screening outcomes.
Asunto(s)
Antibacterianos , Benzaldehídos , Ceftizoxima , Complejos de Coordinación , Pruebas de Sensibilidad Microbiana , Bases de Schiff , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Benzaldehídos/química , Benzaldehídos/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Ceftizoxima/farmacología , Ceftizoxima/química , Ceftizoxima/análogos & derivados , Ceftizoxima/síntesis química , Simulación del Acoplamiento Molecular , Bacterias Gramnegativas/efectos de los fármacos , Estructura Molecular , Bacterias Grampositivas/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis químicaRESUMEN
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Asunto(s)
Contaminación de Alimentos , Animales , Humanos , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Metabolómica/métodos , Proteómica/métodosRESUMEN
The study was designed to prepare pure curcumin nanoparticles in rapid and simple way for target specific drug delivery to kill bacteria lying deep down within the alveoli of lungs via inhaler. Three different methods including evaporation precipitation of nanosuspension (ENP), solid dispersion (SD) and anti-solvent precipitation (ASP) were selected to prepare nanocurcumin in pure form in very simple way. This was done to compare their efficiency in terms of particle size obtained and water solubility and bacterial toxicity of as prepared curcumin nanoparticles. In this comparative study, curcumin NPs obtained from three different methods having particles size 65.3 nm, 98.7 nm and 47.4 nm respectively. The NPs were characterized using various techniques like SEM, XRD, UV-Visible and FTIR for their particle size determination and solubility evaluation. These particles were screened off against five bacterial strains causing lung diseases. AB3 prepared by ASP method, being smallest sized nanostructures, showed maximum solubility in water. These nanoparticles can be used as drug directly via inhaler to the target area without using any support or nano-carrier. In this way minimum dose formulation is required to target bacteria.
Asunto(s)
Curcumina , Enfermedades Pulmonares , Nanopartículas , Humanos , Curcumina/química , Nanopartículas/química , Solubilidad , Agua/química , Bacterias , Pulmón , Tamaño de la PartículaRESUMEN
Plastic has made our lives comfortable as a result of its widespread use in today's world due to its low cost, longevity, adaptability, light weight and hardness; however, at the same time, it has made our lives miserable due to its non-biodegradable nature, which has resulted in environmental pollution. Therefore, the focus of this research work was on an environmentally friendly process. This research work investigated the decomposition of polypropylene waste using florisil as the catalyst in a salt bath over a temperature range of 350-430 °C. A maximum oil yield of 57.41% was recovered at 410 °C and a 40 min reaction time. The oil collected from the decomposition of polypropylene waste was examined using gas chromatography-mass spectrometry (GC-MS). The kinetic parameters of the reaction process were calculated from thermogravimetric data at temperature program rates of 3, 12, 20 and 30 °C·min-1 using the Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunnose (KAS) equations. The activation energy (Ea) and pre-exponential factor (A) for the thermo-catalytic degradation of polypropylene waste were observed in the range of 102.74-173.08 kJ·mol-1 and 7.1 × 108-9.3 × 1011 min-1 for the OFW method and 99.77-166.28 kJ·mol-1 and 1.1 × 108-5.3 × 1011 min-1 for the KAS method at a percent conversion (α) of 0.1 to 0.9, respectively. Moreover, the fuel properties of the oil were assessed and matched with the ASTM values of diesel, gasoline and kerosene oil. The oil was found to have a close resemblance to the commercial fuel. Therefore, it was concluded that utilizing florisil as the catalyst for the decomposition of waste polypropylene not only lowered the activation energy of the pyrolysis reaction but also upgraded the quantity and quality of the oil.
Asunto(s)
Polipropilenos , Pirólisis , Cinética , Plásticos , TermogravimetríaRESUMEN
Biodiesel is considered a sustainable alternative to petro-diesel owing to several favorable characteristics. However, higher production costs, primarily due to the use of costly edible oils as raw materials, are a chief impediment to its pecuniary feasibility. Exploring non-edible oils as raw material for biodiesel is an attractive strategy that would address the economic constraints associated with biodiesel production. This research aims to optimize the reaction conditions for the production of biodiesel through an alkali-catalyzed transesterification of Tamarindus indica seed oil. The Taguchi method was applied to optimize performance parameters such as alcohol-to-oil molar ratio, catalyst amount, and reaction time. The fatty acid content of both oil and biodiesel was determined using gas chromatography. The optimized conditions of alcohol-to-oil molar ratio (6:1), catalyst (1.5% w/w), and reaction time 1 h afforded biodiesel with 93.5% yield. The most considerable contribution came from the molar ratio of alcohol to oil (75.9%) followed by the amount of catalyst (20.7%). In another case, alcohol to oil molar ratio (9:1), catalyst (1.5% w/w) and reaction time 1.5 h afforded biodiesel 82.5% yield. The fuel properties of Tamarindus indica methyl esters produced under ideal conditions were within ASTM D6751 biodiesel specified limits. Findings of the study indicate that Tamarindus indica may be chosen as a prospective and viable option for large-scale production of biodiesel, making it a substitute for petro-diesel.
Asunto(s)
Biocombustibles , Tamarindus , Alcoholes , Álcalis , Biocombustibles/análisis , Catálisis , Aceites de Plantas/química , Estudios ProspectivosRESUMEN
Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin-1, 10°Cmin-1, 15°Cmin-1 and 20°Cmin-1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats-Redfern) and model free methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats-Redfern, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman models were found in the ranges 105-148.48 kJmol-1, 99.41-140.52 kJmol-1, 103.67-149.15 kJmol-1 and 99.93-141.25 kJmol-1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.
Asunto(s)
Poliestirenos , Residuos Sólidos , Calefacción , Cinética , TermogravimetríaRESUMEN
The present work is focused on pyrolysis of polystyrene waste for production of combustible hydrocarbons. The experiments were performed in an indigenously made furnace in the presence of a laboratory synthesised copper oxide. The pyrolysis products were collected and characterised. The Fourier transform infrared spectra showed that the liquid fraction contains C-H, C-O, C-C, C=C and O-H bonds, which correspond to various aliphatic and aromatic compounds. Gas chromatography-mass spectrometry traced compounds ranging from C1 to C4 in the gaseous fraction, whereas in the liquid fraction 15 components ranging from C3 to C24 were detected. From the results it has been concluded that CuO as a catalyst not only increased the liquid yield but also reduced the degradation temperature to great extent. Fuel properties of the pyrolysis oil were determined and compared with standard values of commercial fuel oil. The comparison suggested potential application of pyrolysis oil for domestic and commercial use.
Asunto(s)
Poliestirenos , Pirólisis , Catálisis , Cobre , Calor , Hidrocarburos , ÓxidosRESUMEN
Native, HCl pretreated clay and MnFe2O4/clay composite were investigated as an adsorbent for crystal violet (CV) removal. The adsorption behavior of dye was studied in batch experiments as a function of contact time, adsorbent dose, pH, dye initial concentration and temperature. The medium pH 8, contact time 30 min, MnFe2O4/clay composite dose 0.05 mg/L, temperature 35 °C and 100 mg/L dye initial concentration furnished maximum CV adsorption. Adsorption data fitted well to the Langmuir isotherm model and maximum CV dye adsorption capacity of composite was 49.74 mg/g. The thermodynamic parameters revealed that the adsorption process of CV was exothermic and spontaneous in nature. CV adsorption followed the pseudo second order kinetic model. MnFe2O4/clay composite exhibited good CV adsorption capacity and can be used as an alternative adsorbent for the removal of basic dyes from effluents.
Asunto(s)
Silicatos de Aluminio/química , Compuestos Férricos/química , Violeta de Genciana/aislamiento & purificación , Compuestos de Manganeso/química , Modelos Químicos , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Arcilla , TermodinámicaRESUMEN
Batch and column adsorption modes were compared for the adsorption of U(VI) ions using rice husk waste biomass (RHWB). Response surface methodology was employed for the optimization of process variables, i.e., (pH (A), adsorbent dose (B), initial ion concentration (C)) in batch mode. The B, C and C2 affected the U(VI) adsorption significantly in batch mode. The developed quadratic model was found to be validated on the basis of regression coefficient as well as analysis of variance. The predicted and actual values were found to be correlated well, with negligible residual value, and B, C and C2 were significant terms. The column study was performed considering bed height, flow rate and initial metal ion concentration, and adsorption efficiency was evaluated through breakthrough curves and bed depth service time and Thomas models. Adsorption was found to be dependent on bed height and initial U(VI) ion concentration, and flow rate decreased the adsorption capacity. Thomas models fitted well to the U(VI) adsorption onto RHWB. Results revealed that RHWB has potential to remove U(VI) ions and batch adsorption was found to be efficient versus column mode.
Asunto(s)
Oryza , Uranio/química , Contaminantes Radiactivos del Agua/química , Purificación del Agua/métodos , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Residuos RadiactivosRESUMEN
Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe2O4/clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.
Asunto(s)
Silicatos de Aluminio/química , Colorantes/análisis , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Cationes Bivalentes , Arcilla , Colorantes/química , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Termodinámica , Contaminantes Químicos del Agua/químicaRESUMEN
The present study was conducted to degrade and detoxify 2-chlorophenol (2-CP) under UV irradiation in the presence of titanium dioxide (TiO2) and hydrogen peroxide (H2O2). The treatment efficiency was evaluated on the basis of degradation and cytotoxicity reduction as well as biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) removal. The process variables such as TiO2, pH, UV irradiation time and H2O2 were optimized. Central composite design in combination with response surface methodology was employed to optimize the process variables. A quadratic model was proposed to predict the treatment efficiency and analysis of variance was used to determine the significance of the variables. The correlation between the experimental and predicted degradation was confirmed by the F and P values (<0.05). The coefficient of determination (R2 = 0.99) were high enough to support the validity of developed model. At optimized conditions, up to 92% degradation of 2-CP was achieved with 3.5 × 10-4 s-1 rate constant. Significant reductions in BOD, COD and TOC values were also achieved. Cytotoxicity was evaluated using bioassays and it was observed that UV/TiO2/H2O2 reduced the cytotoxicity considerably. It is concluded that UV/TiO2/H2O2 could possibly be used to detoxify 2-CP in industrial wastewater.
Asunto(s)
Clorofenoles/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Clorofenoles/análisis , Peróxido de Hidrógeno , Oxidación-Reducción , Procesos Fotoquímicos , Titanio , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisisRESUMEN
The present study was conducted to appraise the efficiencies of polyurethane ethylene sorbent (PES) and vinyl acetate sorbent (VAS) for nickel (Ni) adsorption. Process variables, i.e. Ni(II) ions initial concentration, pH, contact time and adsorbent dosage were optimized by response surface methodology (RSM) approach. The Ni(II) adsorption was fitted to the kinetic models (pseudo-first-order and pseudo-second-order) and adsorption isotherms (Freundlich and Langmuir). At optimum conditions of process variables, 171.99 mg/g (64.7%) and 388.08 mg/g (92.7%) Ni(II) was adsorbed onto PES and VAS, respectively. The RSM analysis revealed that maximum Ni(II) adsorption can be achieved at 299 mg/L Ni(II) ions initial concentration, 4.5 pH, 934 min contact time and 1.3 g adsorbent dosage levels for PES, whereas the optimum values for VAS were found to be 402 mg/L Ni(II) ions initial concentration, 4.6 pH, 881 min contact time and 1.2 g adsorbent dosage, respectively. The -OH and -C = O- were involved in the Ni(II) adsorption onto PES and VAS adsorbents. At optimum levels, up to 53.67% and 80.0% Ni(II) was removed from chemical industry wastewater using PES and VAS, respectively, which suggest that PES and VAS could possibly be used for Ni(II) adsorption from industrial wastewater.
Asunto(s)
Etilenos/química , Níquel/química , Poliuretanos/química , Compuestos de Vinilo/química , Contaminantes Químicos del Agua/química , Purificación del Agua/instrumentación , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Aguas Residuales/químicaRESUMEN
Adsorption techniques are widely used to remove pollutants from wastewater; however, composites are gaining more importance due to their excellent adsorption properties. Bentonite composite with Eriobotrya japonica seed was prepared and used for the adsorption of copper (Cu) metal from aqueous media. The process variables such as pH, Cu(II) ions initial concentration, adsorbent dose, contact time and temperature were optimized for maximum Cu(II) adsorption. At pH 5, adsorbent dose 0.1 g, contact time 45 min, Cu(II) ions initial concentration 75 mg/L and temperature 45 °C, maximum Cu(II) adsorption was achieved. Desorption studies revealed that biocomposite is recyclable. Langmuir, Freundlich and Harkins-Jura isotherms as well as pseudo-first and pseudo-second-order kinetics models were applied to understand the adsorption mechanism. Thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) suggest that the adsorption process was spontaneous and endothermic in nature. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the adsorption data. Results showed that biocomposite was more efficient for Cu(II) adsorption in comparison to individuals native Eriobotrya japonica seed biomass and Na-bentonite.
Asunto(s)
Cobre/química , Eriobotrya/química , Semillas/química , Termodinámica , Adsorción , Bentonita/química , Concentración de Iones de Hidrógeno , Modelos Teóricos , Temperatura , Contaminantes Químicos del Agua/análisis , Purificación del AguaRESUMEN
Colored effluents from the textile industry have led to severe environmental pollution, and this has emerged as a global issue. The feasibility of ligninolytic enzymes for the detoxification and degradation of textile wastewater was investigated. Ganoderma lucidum crude ligninolytic enzymes extract (MnP 717.7, LiP 576.3, and Laccase 323.2 IU/mL) was produced using solid-state culture using wheat bran as substrate. The biodegradation treatment efficiency was evaluated on the basis of degradation and detoxification of textile effluents. Standard bioassays were employed for mutagenicity, cytotoxicity and phytotoxicity evaluation before and after biodegradation. The degradation of Masood Textile, Kalash Textile, Khyber Textile and Sitara Textile effluents was achieved up to 87.29%, 80.17%, 77.31% and 69.04%, respectively. The biochemical oxygen demand, chemical oxygen demand, total suspended solids and total organic carbon were improved considerably as a result of biodegradation of textile effluents, which were beyond the permissible limits established by the National Environmental Quality Standards before treatment. The cytotoxicity (Allium cepa, hemolytic, Daphnia magna and brine shrimp), mutagenicity (Ames TA98 and TA100) and phytotoxicity (Triticum aestivum) tests revealed that biodegradation significantly (P < 0.05) detoxifies the toxic agents in wastewater. Results revealed that biodegradation could possibly be used for remediation of textile effluents. However, detoxification monitoring is crucial and should always be used to evaluate the bio-efficiency of a treatment technique.
Asunto(s)
Reactores Biológicos , Hongos/enzimología , Lacasa/metabolismo , Industria Textil , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Animales , Artemia/efectos de los fármacos , Bioensayo , Daphnia/efectos de los fármacos , Residuos Industriales/análisis , Mutágenos , Plantas/efectos de los fármacosRESUMEN
A complex of lincomycin was synthesized with technetium-99m. The synthesis was carried out by using SnCl2.2H2O as reducing agent and ascorbic acid as stabilizer. The effect of various parameters such as amount of ligand/reducing agent, pH value and reaction time on radio labeling process was studied. The characterization of the (99m)Tc-Lincomycin was performed by HPLC and electrophoresis Biodistribution studies were carried out by analyzing the model of bacterial infectious rats (Sprague-Dawley). The uptake of infectious lesions at different time interval was also studied by using scintigraphic technique. The complex showed effective target to non-target ratio for various inflammatory or infectious lesions. The (99m)Tc-Lincomycin effective binding to living bacteria and could be used successfully as an infection imaging agent.
Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacocinética , Lincomicina/síntesis química , Lincomicina/farmacocinética , Radioisótopos , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Infecciones Estafilocócicas/diagnóstico por imagen , Tecnecio , Animales , Antibacterianos/administración & dosificación , Ácido Ascórbico/química , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Excipientes/química , Lincomicina/administración & dosificación , Lincomicina/análogos & derivados , Masculino , Oxidación-Reducción , Conejos , Cintigrafía , Radiofármacos/administración & dosificación , Ratas Sprague-Dawley , Sustancias Reductoras/química , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Compuestos de Estaño/química , Distribución TisularRESUMEN
The optimum conditions to label ethylenediaminetetramethylene phosphonate (EDTMP) compound with (90)y as a potential candidate for bone metastases therapy were investigated. Yttrium-90 is a pure ß-emitter and can be obtained by (89)y (n,γ) (90)y nuclear reaction in a reactor or from an in-house generator system ((90)srï®(90)y). The preparation of (90)Y-EDTMPis described using (90)y, which was obtained from neutron irradiation of y2o3 as well as from a laboratory scale organic resin-based (90)sr--(90)y generator. Because of the radiolabeling yield of 90Y-EDTMP on ligand/metal molar ratio, incubation time and ph was evaluated. Under optimum parameters, the radiolabeling yields of (90)Y-EDTMP were <95% for no-carrier-added as well as carrier-added (90)y. The biodistribution of no-carrier-added and carrier-added (90)Y-EDTMP complexes in rats was identical. The results indicate that (90)y (carrier-added)-edtmp is also an effective bone pain palliation agent because of its rapid blood clearance, greater uptake in bones and little absorption in soft tissues.
Asunto(s)
Neoplasias Óseas/radioterapia , Compuestos Organofosforados/uso terapéutico , Radiofármacos/uso terapéutico , Radioisótopos de Itrio/uso terapéutico , Animales , Neoplasias Óseas/secundario , Portadores de Fármacos , Marcaje Isotópico , Masculino , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Distribución TisularRESUMEN
The escalating threat of drug-resistant microbes underscores the urgent need for novel antimicrobial agents. In response, considerable research effort has been directed towards developing innovative frameworks and strategies to address this challenge. Chalcones, known for their broad-spectrum biological activities, have emerged as promising candidates for combating drug resistance. In this study, a series of 2'-Hydroxychalcones (5a, 5b, 5c, and 5d) with varying electron withdrawing and donating groups were synthesized via Claisen Schmidt condensation. FT-IR, 1H NMR, and 13C NMR analyses were employed to confirm the structure of the synthesized compounds. Subsequent evaluation of the synthesized compounds revealed their potential as antibacterial and antibiofilm agents. Notably, compounds 5a and 5d exhibited potent antibacterial activity against multidrug-resistant (MDR) bacteria E. coli, P. aeruginosa, K. pneumoniae, and S. aureus, surpassing the reference drug Ciprofloxacin (30 µg/mL) and other synthesized compounds. Compound 5d showed a notable 19.5 mm zone of inhibition against K. pneumoniae. Furthermore, 5a (at a concentration of 30 µg) and 5d (at a concentration of 50 µg) exhibited statistically significant (P > 0.05) biofilm inhibition efficacy compared to Ciprofloxacin (30 µg/mL). The synthesized chalcones 5a-5d were also docked via PachDock molecular docking software for Glucosamine-6-phosphate (GlcN-6-P) synthase inhibition and showed that ligand 5a exhibited outstanding results with score 4238 and ACE value -160.89 kcal/mol, consistent with the observed antibacterial activity. These findings underscore the potential of chalcones, particularly 5a and 5d, as promising candidates for the development of new antimicrobial agents targeting drug-resistant microbes and biofilm formation.
RESUMEN
Hydrogels are polymeric structures characterized by their three-dimensional nature, insolubility in aqueous media, and remarkable ability to absorb significant amounts of water. Owing to their exceptional biocompatibility with living tissues, hydrogels find extensive use in various biomedical applications. Guggul gum grafted polyacrylamide hydrogels (SG) were prepared and green synthesized SrO, CoO and SrO-CoO nanoparticles (NPs) were incorporated with hydrogels (SrG, CoG, Sr-CoG) respectively. The fabricated hydrogels were characterized by various analytical techniques such as FTIR, XRD and SEM. XRD results confirmed the presence of Sr and Co metal nanoparticles in the fabricated hydrogels matrix, SrG pattern showed diffraction peaks at 2θ = 30°, 36.59°, 44.11°, 50.22° and 62.20° while CoG peaks appeared at 2θ = 36.59°, 42.32°, 61.18°, 74.05° and 77.08°. SG, SrG, CoG and Sr-CoG hydrogels showed 11%, 32%, 23% and 45% radical scavenging activity respectively as compared to standard BHT (Butylated hydroxyl toluene). In vitro drug release tests results showed that SG, SrG, CoG and Sr-CoG exhibited 21%, 16%, 13% and 10% sustained release of naproxen respectively. The results revealed that SrO and CoO nanoparticles dopped hydrogels possessed good wound healing potential as compared to conventional hydrogels, which provides great potential in clinical treatment for wounds.
Asunto(s)
Resinas Acrílicas , Preparaciones de Acción Retardada , Liberación de Fármacos , Nanopartículas del Metal , Cicatrización de Heridas , Resinas Acrílicas/química , Cicatrización de Heridas/efectos de los fármacos , Nanopartículas del Metal/química , Hidrogeles/química , Hidrogeles/síntesis química , Cobalto/química , Estroncio/química , Óxidos/química , Animales , Portadores de Fármacos/químicaRESUMEN
This study focuses on the investigation of the significance of polymers in drug delivery approaches. The carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) and dextrin-based hydrogel membrane were prepared and employed for the sustained release of third-generation oral antibiotic (cefixime). Different proportions of CMC, PVA and dextrin were blended and hydrogel membranes were fabricated via solvent casting method. The prepared membrane was characterized by FTIR, SEM, UV-visible, TGA and swelling analysis. Cefixime drug was incorporated in the CMC/PVA/dextrin matrix and drug release was investigated. The sustained release of the tested drug (cefixime) was investigated and the drug was released in 120 min in the phosphate-buffered saline (PBS) solution. The antibacterial activity of the prepared membrane was promising against Proteus vulgaris, salmonella typhi, Escherichia coli and Bacillus subtilis strains. The swelling capabilities, thermal stability and non-toxic nature of the prepared CMC/PVA/dextrin membrane could have potential applications for cefixime drug in delivery in a controlled way for the treatment of infectious diseases.
RESUMEN
The presence of chromium [Cr(VI)] and lead [Pb(II)] ions in the water bodies have adverse effects on humans and aquatic life. Graphene oxide-based magnetic nanocomposites synthesized in the presence of chitosan (mGO/CS) or polyaniline (mGO/PA) as potential adsorbents for the removal of Cr(VI) and Pb(II) ions. The FTIR (Fourier transform infrared spectroscopy), EDX (Energy dispersive X-ray), XRD (X-ray diffraction) and SEM (Scanning electron microscopy) were employed to investigate the chemical composition, structural, elemental analysis, crystalline size and morphology of the nanocomposites. The FTIR results confirmed the synthesis of the nanocomposites by detecting peaks of specific functional groups. The average crystallite sizes of the mGO, mGO/CS, and mGO/PA nanocomposites were 17, 25, and 23 (nm), respectively, as determined by the Debye-Scherrer equation from the XRD data. Batch adsorption experiments were conducted for Pb(II) and Cr(VI) removal by varying the variables like pH, concentration of metal ions and contact time. The Box Behnken design (BBD) was used to optimize the adsorption parameters. Under the optimum conditions, mGO/CS and mGO/PA showed maximum removal percentages (%R) of 92.36 and 98.7 for Pb(II), and 85.25 and 93.08 for Cr(VI), respectively. The adsorption capacities were 110.84 and 118.44 mg/g for Pb(II), and 87.74 and 111.7 mg/g for Cr(VI) were obtained for mGO/CS and mGO/PA, respectively. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the experimental data and explain the adsorption mechanism of the nanocomposite materials for both metal ions.