Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Eur Phys J E Soft Matter ; 36(10): 116, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24136181

RESUMEN

We study diamagnetically levitated foams with widely different liquid fractions. Due to the levitation, drainage is effectively suppressed and the dynamics is driven by the coarsening of the foam bubbles. For dry foams, the bubble size is found to increases as the square root of foam age, as expected from a generalized von Neumann law. At higher liquid content the behavior changes to that of Ostwald ripening where the bubbles grow with the 1/3 power of the age. Using Diffusing Wave Spectroscopy we study the local dynamics in the different regimes and find diffusive behavior for dry foams and kinetic behavior for wet foams.

2.
Eur Phys J E Soft Matter ; 28(2): 205-10, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19083034

RESUMEN

In the usual description of the granular Maxwell's demon experiment, where phase separation occurs due to an instability in the densities, the control parameter scales linearly with gravity. In this paper we investigate this scaling experimentally using the properties of diamagnetic particles in strong magnetic-field gradients to reduce and even balance gravitation. We find that phase separation occurs even at vanishingly small gravitational accelerations as is predicted by other theories. This is due to the fact that granular samples tend to form clusters as a result of the inelasticity of the particle collisions. Combining the heat balance of the driven granular gas with the cooling rate and thus the appearance of clustering, we are able to describe the crossover between the limiting cases.

3.
Phys Rev Lett ; 100(24): 248001, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18643629

RESUMEN

We investigate the dynamics of the freely cooling granular gas. For this purpose we diamagnetically levitate the grains providing a terrestrial milligravity environment. At early times we find good agreement with Haff's law, where the time scale for particle collisions can be determined from independent measurements. At late times, clustering of particles occurs. This can be included in a Haff-like description taking into account the decreasing number of free particles. At very late times, only a single particle determines the dynamics, which is again described by a version of Haff's law. With this a good description of the data is possible over the whole time range.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda