Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Appl Clin Med Phys ; 25(1): e14215, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37987544

RESUMEN

PURPOSE: We sought to develop machine learning models to predict the results of patient-specific quality assurance (QA) for volumetric modulated arc therapy (VMAT), which were represented by several dose-evaluation metrics-including the gamma passing rates (GPRs)-and criteria based on the radiomic features of 3D dose distribution in a phantom. METHODS: A total of 4,250 radiomic features of 3D dose distribution in a cylindrical dummy phantom for 140 arcs from 106 clinical VMAT plans were extracted. We obtained the following dose-evaluation metrics: GPRs with global and local normalization, the dose difference (DD) in 1% and 2% passing rates (DD1% and DD2%) for 10% and 50% dose threshold, and the distance-to-agreement in 1-mm and 2-mm passing rates (DTA1 mm and DTA2 mm) for 0.5%/mm and 1.0%.mm dose gradient threshold determined by measurement using a diode array in patient-specific QA. The machine learning regression models for predicting the values of the dose-evaluation metrics using the radiomic features were developed based on the elastic net (EN) and extra trees (ET) models. The feature selection and tuning of hyperparameters were performed with nested cross-validation in which four-fold cross-validation is used within the inner loop, and the performance of each model was evaluated in terms of the root mean square error (RMSE), the mean absolute error (MAE), and Spearman's rank correlation coefficient. RESULTS: The RMSE and MAE for the developed machine learning models ranged from <1% to nearly <10% depending on the dose-evaluation metric, the criteria, and dose and dose gradient thresholds used for both machine learning models. It was advantageous to focus on high dose region for predicating global GPR, DDs, and DTAs. For certain metrics and criteria, it was possible to create models applicable for patients' heterogeneity by training only with dose distributions in phantom. CONCLUSIONS: The developed machine learning models showed high performance for predicting dose-evaluation metrics especially for high dose region depending on the metric and criteria. Our results demonstrate that the radiomic features of dose distribution can be considered good indicators of the plan complexity and useful in predicting measured dose evaluation metrics.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radiómica , Aprendizaje Automático , Rayos gamma , Dosificación Radioterapéutica
2.
J Appl Clin Med Phys ; 24(12): e14136, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37633834

RESUMEN

PURPOSE: The purpose of this study was to create and evaluate deep learning-based models to detect and classify errors of multi-leaf collimator (MLC) modeling parameters in volumetric modulated radiation therapy (VMAT), namely the transmission factor (TF) and the dosimetric leaf gap (DLG). METHODS: A total of 33 clinical VMAT plans for prostate and head-and-neck cancer were used, assuming a cylindrical and homogeneous phantom, and error plans were created by altering the original value of the TF and the DLG by ± 10, 20, and 30% in the treatment planning system (TPS). The Gaussian filters of σ = 0.5 $\sigma = 0.5$ and 1.0 were applied to the planar dose maps of the error-free plan to mimic the measurement dose map, and thus dose difference maps between the error-free and error plans were obtained. We evaluated 3 deep learning-based models, created to perform the following detections/classifications: (1) error-free versus TF error, (2) error-free versus DLG error, and (3) TF versus DLG error. Models to classify the sign of the errors were also created and evaluated. A gamma analysis was performed for comparison. RESULTS: The detection and classification of TF and DLG error were feasible for σ = 0.5 $\sigma = 0.5$ ; however, a considerable reduction of accuracy was observed for σ = 1.0 $\sigma = 1.0$ depending on the magnitude of error and treatment site. The sign of errors was detectable by the specifically trained models for σ = 0.5 $\sigma = 0.5$ and 1.0. The gamma analysis could not detect errors. CONCLUSIONS: We demonstrated that the deep learning-based models could feasibly detect and classify TF and DLG errors in VMAT dose distributions, depending on the magnitude of the error, treatment site, and the degree of mimicked measurement doses.


Asunto(s)
Aprendizaje Profundo , Radioterapia de Intensidad Modulada , Masculino , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radiometría
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda