Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36365943

RESUMEN

In satellite remote sensing applications, waterbody segmentation plays an essential role in mapping and monitoring the dynamics of surface water. Satellite image segmentation-examining a relevant sensor data spectrum and identifying the regions of interests to obtain improved performance-is a fundamental step in satellite data analytics. Satellite image segmentation is challenging for a number of reasons, which include cloud interference, inadequate label data, low lighting and the presence of terrain. In recent years, Convolutional Neural Networks (CNNs), combined with (satellite captured) multispectral image segmentation techniques, have led to promising advances in related research. However, ensuring sufficient image resolution, maintaining class balance to achieve prediction quality and reducing the computational overhead of the deep neural architecture are still open to research due to the sophisticated CNN hierarchical architectures. To address these issues, we propose a number of methods: a multi-channel Data-Fusion Module (DFM), Neural Adaptive Patch (NAP) augmentation algorithm and re-weight class balancing (implemented in our PHR-CB experimental setup). We integrated these techniques into our novel Fusion Adaptive Patch Network (FAPNET). Our dataset is the Sentinel-1 SAR microwave signal, used in the Microsoft Artificial Intelligence for Earth competition, so that we can compare our results with the top scores in the competition. In order to validate our approach, we designed four experimental setups and in each setup, we compared our results with the popular image segmentation models UNET, VNET, DNCNN, UNET++, U2NET, ATTUNET, FPN and LINKNET. The comparisons demonstrate that our PHR-CB setup, with class balance, generates the best performance for all models in general and our FAPNET approach outperforms relative works. FAPNET successfully detected the salient features from the satellite images. FAPNET with a MeanIoU score of 87.06% outperforms the state-of-the-art UNET, which has a score of 79.54%. In addition, FAPNET has a shorter training time than other models, comparable to that of UNET (6.77 min for 5 epochs). Qualitative analysis also reveals that our FAPNET model successfully distinguishes micro waterbodies better than existing models. FAPNET is more robust to low lighting, cloud and weather fluctuations and can also be used in RGB images. Our proposed method is lightweight, computationally inexpensive, robust and simple to deploy in industrial applications. Our research findings show that flood-water mapping is more accurate when using SAR signals than RGB images. Our FAPNET architecture, having less parameters than UNET, can distinguish micro waterbodies accurately with shorter training time.


Asunto(s)
Inteligencia Artificial , Inundaciones , Redes Neurales de la Computación , Algoritmos , Agua , Procesamiento de Imagen Asistido por Computador/métodos
2.
Sci Rep ; 11(1): 23631, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880311

RESUMEN

Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are applied to smooth the data set. In stage two, the network had gotten deeply to the optic disk segment for eliminating any exudate's false prediction because the exudates had the same color pixel as the optic disk. In stage three, the network is fed through training data to classify each label. Finally, the layers of the convolution neural network are re-edited, and used to localize the impact of DR on the patient's eye. The framework tackles the matching technique between two essential concepts where the classification problem depends on the supervised learning method. While the localization problem was obtained by the weakly supervised method. An additional layer known as weakly supervised sensitive heat map (WSSH) was added to detect the ROI of the lesion at a test accuracy of 98.65%, while comparing with Class Activation Map that involved weakly supervised technology achieved 0.954. The main purpose is to learn a representation that collect the central localization of discriminative features in a retina image. CNN-WSSH model is able to highlight decisive features in a single forward pass for getting the best detection of lesions.


Asunto(s)
Retinopatía Diabética/diagnóstico por imagen , Diagnóstico por Computador/métodos , Calor , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático Supervisado , Algoritmos , Retinopatía Diabética/clasificación , Retinopatía Diabética/patología , Humanos , Redes Neurales de la Computación , Disco Óptico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda