Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Nat Immunol ; 25(3): 379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429449
2.
Proc Natl Acad Sci U S A ; 120(42): e2307972120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812721

RESUMEN

Although generating new neurons in the ischemic injured brain would be an ideal approach to replenish the lost neurons for repairing the damage, the adult mammalian brain retains only limited neurogenic capability. Here, we show that direct conversion of microglia/macrophages into neurons in the brain has great potential as a therapeutic strategy for ischemic brain injury. After transient middle cerebral artery occlusion in adult mice, microglia/macrophages converge at the lesion core of the striatum, where neuronal loss is prominent. Targeted expression of a neurogenic transcription factor, NeuroD1, in microglia/macrophages in the injured striatum enables their conversion into induced neuronal cells that functionally integrate into the existing neuronal circuits. Furthermore, NeuroD1-mediated induced neuronal cell generation significantly improves neurological function in the mouse stroke model, and ablation of these cells abolishes the gained functional recovery. Our findings thus demonstrate that neuronal conversion contributes directly to functional recovery after stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Ratones , Animales , Microglía/metabolismo , Accidente Cerebrovascular/metabolismo , Macrófagos/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Mamíferos
3.
Genes Cells ; 28(7): 526-534, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37114566

RESUMEN

Neuronal regeneration to replenish lost neurons after injury is critical for brain repair. Microglia, brain-resident macrophages that have the propensity to accumulate at the site of injury, can be a potential source for replenishing lost neurons through fate conversion into neurons, induced by forced expression of neuronal lineage-specific transcription factors. However, it has not been strictly demonstrated that microglia, rather than central nervous system-associated macrophages, such as meningeal macrophages, convert into neurons. Here, we show that NeuroD1-transduced microglia can be successfully converted into neurons in vitro using lineage-mapping strategies. We also found that a chemical cocktail treatment further promoted NeuroD1-induced microglia-to-neuron conversion. NeuroD1 with loss-of-function mutation, on the other hand, failed to induce the neuronal conversion. Our results indicate that microglia are indeed reprogrammed into neurons by NeuroD1 with neurogenic transcriptional activity.


Asunto(s)
Microglía , Neuronas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/metabolismo , Microglía/metabolismo , Neurogénesis , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Ratones
4.
Brain Behav Immun ; 121: 122-141, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986725

RESUMEN

Multiple system atrophy (MSA) is a severe α-synucleinopathy facilitated by glial reactions; the cerebellar variant (MSA-C) preferentially involves olivopontocerebellar fibres with conspicuous demyelination. A lack of aggressive models that preferentially involve olivopontocerebellar tracts in adulthood has hindered our understanding of the mechanisms of demyelination and neuroaxonal loss, and thus the development of effective treatments for MSA. We therefore aimed to develop a rapidly progressive mouse model that recaptures MSA-C pathology. We crossed Plp1-tTA and tetO-SNCA*A53T mice to generate Plp1-tTA::tetO-SNCA*A53T bi-transgenic mice, in which human A53T α-synuclein-a mutant protein with enhanced aggregability-was specifically produced in the oligodendrocytes of adult mice using Tet-Off regulation. These bi-transgenic mice expressed mutant α-synuclein from 8 weeks of age, when doxycycline was removed from the diet. All bi-transgenic mice presented rapidly progressive motor deterioration, with wide-based ataxic gait around 22 weeks of age and death around 30 weeks of age. They also had prominent demyelination in the brainstem/cerebellum. Double immunostaining demonstrated that myelin basic protein was markedly decreased in areas in which SM132, an axonal marker, was relatively preserved. Demyelinating lesions exhibited marked ionised calcium-binding adaptor molecule 1-, arginase-1-, and toll-like receptor 2-positive microglial reactivity and glial fibrillary acidic protein-positive astrocytic reactivity. Microarray analysis revealed a strong inflammatory response and cytokine/chemokine production in bi-transgenic mice. Neuronal nuclei-positive neuronal loss and patchy microtubule-associated protein 2-positive dendritic loss became prominent at 30 weeks of age. However, a perceived decrease in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta in bi-transgenic mice compared with wild-type mice was not significant, even at 30 weeks of age. Wild-type, Plp1-tTA, and tetO-SNCA*A53T mice developed neither motor deficits nor demyelination. In bi-transgenic mice, double immunostaining revealed human α-synuclein accumulation in neurite outgrowth inhibitor A (Nogo-A)-positive oligodendrocytes beginning at 9 weeks of age; its expression was further increased at 10 to 12 weeks, and these increased levels were maintained at 12, 24, and 30 weeks. In an α-synuclein-proximity ligation assay, α-synuclein oligomers first appeared in brainstem oligodendrocytes as early as 9 weeks of age; they then spread to astrocytes, neuropil, and neurons at 12 and 16 weeks of age. α-Synuclein oligomers in the brainstem neuropil were most abundant at 16 weeks of age and decreased thereafter; however, those in Purkinje cells successively increased until 30 weeks of age. Double immunostaining revealed the presence of phosphorylated α-synuclein in Nogo-A-positive oligodendrocytes in the brainstem/cerebellum as early as 9 weeks of age. In quantitative assessments, phosphorylated α-synuclein gradually and successively accumulated at 12, 24, and 30 weeks in bi-transgenic mice. By contrast, no phosphorylated α-synuclein was detected in wild-type, tetO-SNCA*A53T, or Plp1-tTA mice at any age examined. Pronounced demyelination and tubulin polymerisation, promoting protein-positive oligodendrocytic loss, was closely associated with phosphorylated α-synuclein aggregates at 24 and 30 weeks of age. Early inhibition of mutant α-synuclein expression by doxycycline diet at 23 weeks led to fully recovered demyelination; inhibition at 27 weeks led to persistent demyelination with glial reactions, despite resolving phosphorylated α-synuclein aggregates. In conclusion, our bi-transgenic mice exhibited progressively increasing demyelination and neuroaxonal loss in the brainstem/cerebellum, with rapidly progressive motor deterioration in adulthood. These mice showed marked microglial and astrocytic reactions with inflammation that was closely associated with phosphorylated α-synuclein aggregates. These features closely mimic human MSA-C pathology. Notably, our model is the first to suggest that α-synuclein oligomers may spread from oligodendrocytes to neurons in transgenic mice with human α-synuclein expression in oligodendrocytes. This model of MSA is therefore particularly useful for elucidating the in vivo mechanisms of α-synuclein spreading from glia to neurons, and for developing therapies that target glial reactions and/or α-synuclein oligomer spreading and aggregate formation in MSA.

5.
Brain ; 146(2): 645-656, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35253861

RESUMEN

Polygenic inheritance plays a pivotal role in driving multiple sclerosis susceptibility, an inflammatory demyelinating disease of the CNS. We developed polygenic risk scores (PRS) of multiple sclerosis and assessed associations with both disease status and severity in cohorts of European descent. The largest genome-wide association dataset for multiple sclerosis to date (n = 41 505) was leveraged to generate PRS scores, serving as an informative susceptibility marker, tested in two independent datasets, UK Biobank [area under the curve (AUC) = 0.73, 95% confidence interval (CI): 0.72-0.74, P = 6.41 × 10-146] and Kaiser Permanente in Northern California (KPNC, AUC = 0.8, 95% CI: 0.76-0.82, P = 1.5 × 10-53). Individuals within the top 10% of PRS were at higher than 5-fold increased risk in UK Biobank (95% CI: 4.7-6, P = 2.8 × 10-45) and 15-fold higher risk in KPNC (95% CI: 10.4-24, P = 3.7 × 10-11), relative to the median decile. The cumulative absolute risk of developing multiple sclerosis from age 20 onwards was significantly higher in genetically predisposed individuals according to PRS. Furthermore, inclusion of PRS in clinical risk models increased the risk discrimination by 13% to 26% over models based only on conventional risk factors in UK Biobank and KPNC, respectively. Stratifying disease risk by gene sets representative of curated cellular signalling cascades, nominated promising genetic candidate programmes for functional characterization. These pathways include inflammatory signalling mediation, response to viral infection, oxidative damage, RNA polymerase transcription, and epigenetic regulation of gene expression to be among significant contributors to multiple sclerosis susceptibility. This study also indicates that PRS is a useful measure for estimating susceptibility within related individuals in multicase families. We show a significant association of genetic predisposition with thalamic atrophy within 10 years of disease progression in the UCSF-EPIC cohort (P < 0.001), consistent with a partial overlap between the genetics of susceptibility and end-organ tissue injury. Mendelian randomization analysis suggested an effect of multiple sclerosis susceptibility on thalamic volume, which was further indicated to be through horizontal pleiotropy rather than a causal effect. In summary, this study indicates important, replicable associations of PRS with enhanced risk assessment and radiographic outcomes of tissue injury, potentially informing targeted screening and prevention strategies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esclerosis Múltiple , Humanos , Herencia Multifactorial/genética , Esclerosis Múltiple/genética , Epigénesis Genética , Pueblo Europeo , Factores de Riesgo , Predisposición Genética a la Enfermedad/genética , Fenotipo
6.
Neuropathology ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566440

RESUMEN

The hypothalamus is the region of the brain that integrates the neuroendocrine system and whole-body metabolism. Patients with Alzheimer's disease (AD) have been reported to exhibit pathological changes in the hypothalamus, such as neurofibrillary tangles (NFTs) and amyloid plaques (APs). However, few studies have investigated whether hypothalamic AD pathology is associated with clinical factors. We investigated the association between AD-related pathological changes in the hypothalamus and clinical pictures using autopsied brain samples obtained from deceased residents of a Japanese community. A total of 85 autopsied brain samples were semi-quantitatively analyzed for AD pathology, including NFTs and APs. Our histopathological studies showed that several hypothalamic nuclei, such as the tuberomammillary nucleus (TBM) and lateral hypothalamic area (LHA), are vulnerable to AD pathologies. NFTs are observed in various neuropathological states, including normal cognitive cases, whereas APs are predominantly observed in AD. Regarding the association between hypothalamic AD pathologies and clinical factors, the degree of APs in the TBM and LHA was associated with a lower body mass index while alive, after adjusting for sex and age at death. However, we found no significant association between hypothalamic AD pathology and the prevalence of hypertension, diabetes, or dyslipidemia. Our study showed that a lower BMI, which is a poor prognostic factor of AD, might be associated with hypothalamic AP pathology and highlighted new insights regarding the disruption of the brain-whole body axis in AD.

7.
BMC Oral Health ; 24(1): 716, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909199

RESUMEN

BACKGROUND: Isaacs' syndrome, also known as neuromyotonia or peripheral nerve hyperexcitability, is a rare disorder that affects the peripheral nervous system. Clinical findings include cramps, fasciculations, and myokymia; however, there are few reports of dental treatment for trismus. CASE PRESENTATION: A patient with trismus due to Isaacs' syndrome experienced swelling and pain in the gingiva surrounding his right lower first molar. He was diagnosed with chronic apical periodontitis by a dentist near his home. However, the patient was informed that dental treatment and medication could not be administered because of the presence of Isaacs' syndrome, and he visited the Geriatric Dentistry and Perioperative Oral Care Center at Kyushu University Hospital 2 weeks later. The patient's painless mouth-opening distance (between incisors) was 20 mm at that time, and medication, including amoxicillin capsules and acetaminophen, was administered because the dental extraction forceps or endodontic instruments were difficult to insert into the oral cavity for treatment. Two months after his initial visit, the patient visited us complaining of pain in the same area. However, he had recently undergone plasmapheresis treatment in neurology to alleviate limited mouth opening and systemic myalgia, resulting in a pain-free mouth-opening distance of approximately 35 mm. During this temporary period in which he had no restriction in mouth opening, we performed tooth extraction and bridge restoration on the mandibular right first molar and created an oral appliance for sleep bruxism. CONCLUSIONS: Plasmapheresis therapy transiently reduced trismus, rendering dental interventions feasible, albeit temporarily. This case report underscores the importance of close collaboration between neurologists and dentists who encounter similar cases while furnishing valuable insights to inform dental treatment planning.


Asunto(s)
Trismo , Humanos , Masculino , Trismo/terapia , Trismo/etiología
8.
J Neurol Neurosurg Psychiatry ; 94(9): 726-737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37076291

RESUMEN

BACKGROUND: Granulocyte invasion into the brain is a pathoanatomical feature differentiating neuromyelitis optica spectrum disorder (NMOSD) from multiple sclerosis (MS). We aimed to determine whether granulocyte activation markers (GAM) in cerebrospinal fluid (CSF) can be used as a biomarker to distinguish NMOSD from MS, and whether levels associate with neurological impairment. METHODS: We quantified CSF levels of five GAM (neutrophil elastase, myeloperoxidase, neutrophil gelatinase-associated lipocalin, matrixmetalloproteinase-8, tissue inhibitor of metalloproteinase-1), as well as a set of inflammatory and tissue-destruction markers, known to be upregulated in NMOSD and MS (neurofilament light chain, glial fibrillary acidic protein, S100B, matrix metalloproteinase-9, intercellular adhesion molecule-1, vascular cellular adhesion molecule-1), in two cohorts of patients with mixed NMOSD and relapsing-remitting multiple sclerosis (RRMS). RESULTS: In acute NMOSD, GAM and adhesion molecules, but not the other markers, were higher than in RRMS and correlated with actual clinical disability scores. Peak GAM levels occurred at the onset of NMOSD attacks, while they were stably low in MS, allowing to differentiate the two diseases for ≤21 days from onset of clinical exacerbation. Composites of GAM provided area under the curve values of 0.90-0.98 (specificity of 0.76-1.0, sensitivity of 0.87-1.0) to differentiate NMOSD from MS, including all anti-aquaporin-4 protein (aAQP4)-antibody-negative patients who were untreated. CONCLUSIONS: GAM composites represent a novel biomarker to reliably differentiate NMOSD from MS, including in aAQP4- NMOSD. The association of GAM with the degree of concurrent neurological impairment provides evidence for their pathogenic role, in turn suggesting them as potential drug targets in acute NMOSD.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Esclerosis Múltiple/diagnóstico , Inhibidor Tisular de Metaloproteinasa-1 , Neuromielitis Óptica/patología , Acuaporina 4 , Inflamación , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
9.
J Sleep Res ; : e14102, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37984842

RESUMEN

We report a case of monozygotic twin sisters with hereditary spastic paraplegia type 4 (SPG4) and epilepsy, only one of whom had a diagnosis of narcolepsy type 1 (NT1). The older sister with NT1 exhibited excessive daytime sleepiness, cataplexy, sleep-onset rapid eye movement period in the multiple sleep latency test, and decreased orexin levels in cerebrospinal fluid. Both sisters had HLA-DRB1*15:01-DQB1*06:02 and were further identified to have a novel missense mutation (c.1156A > C, p.Asn386His) in the coding exon of the spastin (SPAST) gene. The novel missense mutation might be involved in the development of epilepsy. This case is characterised by a combined diagnosis of SPG4 and epilepsy, and it is the first report of NT1 combined with epilepsy and genetically confirmed SPG4. The fact that only one of the twins has NT1 suggests that acquired and environmental factors are important in the pathogenesis of NT1.

10.
Eur J Pediatr ; 182(7): 3175-3185, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119299

RESUMEN

Myelin oligodendrocyte glycoprotein antibody (MOG-Ab) is an autoantibody associated with acquired demyelinating syndrome (ADS) in childhood and adults. The pathogenic roles of MOG-Ab and long-term outcomes of children with MOG-Ab-associated disease (MOGAD) remain elusive. We investigated the clinical features of children with ADS during follow-up in our institute. Clinical data were retrospectively analyzed using medical charts of patients managed in Kyushu University Hospital from January 1st, 2001, to March 31st, 2022. Participants were children of < 18 years of age when they received a diagnosis of ADS in our hospital. Cell-based assays were used to detect MOG-Ab in serum or cerebrospinal fluid at the onset or recurrence of ADS. The clinical and neuroimaging data of MOG-Ab-positive and MOG-Ab-negative patients were statistically analyzed. Among 31 patients enrolled in this study, 22 (13 females, 59%) received tests for MOG antibodies. Thirteen cases (59%) were MOG-Ab-positive and were therefore defined as MOGAD; 9 (41%) were MOG-Ab-negative. There were no differences between MOGAD and MOG-Ab-negative patients in age at onset, sex, diagnostic subcategories, or duration of follow-up. MOGAD patients experienced headache and/or somatosensory symptoms more frequently than MOG-Ab-negative patients (12/13 (92%) vs. 3/9 (22%); p = 0.0066). Somatosensory problems included persistent pain with hyperesthesia in the left toe, perineal dysesthesia, and facial hypesthesia. No specific neuroimaging findings were associated with MOGAD or the presence of somatosensory symptoms. CONCLUSIONS: Long-lasting somatosensory disturbances are prominent comorbidities in children with MOGAD. Prospective cohorts are required to identify molecular and immunogenetic profiles associated with somatosensory problems in MOGAD. WHAT IS KNOWN: • Recurrence of demyelinating events occurs in a group of children with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). WHAT IS NEW: • Long-lasting headache and somatosensory problems are frequent comorbidities with pediatric MOGAD. Pain and somatosensory problems may persist for more than 5 years. • Neuroimaging data do not indicate specific findings in children with somatic disturbances.


Asunto(s)
Dolor Crónico , Humanos , Femenino , Niño , Glicoproteína Mielina-Oligodendrócito , Estudios Prospectivos , Estudios Retrospectivos , Cefalea , Hospitales Universitarios , Síndrome , Autoanticuerpos
11.
Proc Natl Acad Sci U S A ; 117(4): 2160-2169, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932428

RESUMEN

In multiple sclerosis plaques, oligodendroglial connexin (Cx) 47 constituting main gap junction channels with astroglial Cx43 is persistently lost. As mice with Cx47 single knockout exhibit no demyelination, the roles of Cx47 remain undefined. We aimed to clarify the effects of oligodendroglia-specific Cx47 inducible conditional knockout (icKO) on experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein peptide (MOG35-55) in PLP/CreERT;Cx47fl/fl mice at 14 d after tamoxifen injection. Cx47 icKO mice demonstrated exacerbation of acute and chronic relapsing EAE with more pronounced demyelination than Cx47 flox (fl)/fl littermates. CD3+ T cells more abundantly infiltrated the spinal cord in Cx47 icKO than in Cx47 fl/fl mice throughout the acute to chronic phases. CXCR3-CCR6+CD4+ and IL17+IFNγ-CD4+ helper T (Th) 17 cells isolated from spinal cord and brain tissues were significantly increased in Cx47 icKO mice compared with Cx47 fl/fl mice, while MOG35-55-specific proliferation and proinflammatory cytokine production of splenocytes were unaltered. Microarray analysis of isolated microglia revealed stronger microglial activation toward proinflammatory and injury-response phenotypes with increased expressions of chemokines that can attract Th17 cells, including Ccl2, Ccl3, Ccl4, Ccl7, and Ccl8, in Cx47 icKO mice compared with Cx47 fl/fl mice. In Cx47 icKO mice, NOS2+ and MHC class II+ microglia were more enriched immunohistochemically, and A1-specific astroglial gene expressions and astroglia immunostained for C3, a representative A1 astrocyte marker, were significantly increased at the acute phase, compared with Cx47 fl/fl mice. These findings suggest that oligodendroglia-specific Cx47 ablation induces severe inflammation upon autoimmune demyelination, underscoring a critical role for Cx47 in regulating neuroinflammation.


Asunto(s)
Conexinas/inmunología , Esclerosis Múltiple/inmunología , Oligodendroglía/inmunología , Animales , Quimiocinas/genética , Quimiocinas/inmunología , Conexinas/genética , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/genética , Vaina de Mielina/genética , Vaina de Mielina/inmunología , Médula Espinal/inmunología , Células Th17/inmunología
12.
Stroke ; 53(8): 2458-2467, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35400203

RESUMEN

BACKGROUND: Although tortuosity of the internal carotid artery (ICA) can pose a significant challenge when performing mechanical thrombectomy, few studies have examined the impact of ICA tortuosity on mechanical thrombectomy outcomes. METHODS: In a registry-based hospital cohort, consecutive patients with anterior circulation stroke in whom mechanical thrombectomy was attempted were divided into 2 groups: those with tortuosity in the extracranial or cavernous ICA (tortuous group) and those without (nontortuous group). The extracranial ICA tortuosity was defined as the presence of coiling or kinking. The cavernous ICA tortuosity was defined by the posterior deflection of the posterior genu or the shape resembling Simmons-type catheter. Outcomes included first pass effect (FPE; extended Thrombolysis in Cerebral Infarction score 2c/3 after first pass), favorable outcome (3-month modified Rankin Scale score of 0-2), and intracranial hemorrhage. RESULTS: Of 370 patients, 124 were in the tortuous group (extracranial ICA tortuosity, 35; cavernous ICA tortuosity, 70; tortuosity at both sites, 19). The tortuous group showed a higher proportion of women and atrial fibrillation than the nontortuous group. FPE was less frequently achieved in the tortuous group than the nontortuous group (21% versus 39%; adjusted odds ratio, 0.45 [95% CI, 0.26-0.77]). ICA tortuosity was independently associated with the longer time from puncture to extended Thrombolysis in Cerebral Infarction ≥2b reperfusion (ß=23.19 [95% CI, 13.44-32.94]). Favorable outcome was similar between groups (46% versus 48%; P=0.87). Frequencies of any intracranial hemorrhage (54% versus 42%; adjusted odds ratio, 1.61 [95% CI, 1.02-2.53]) and parenchymal hematoma (11% versus 6%; adjusted odds ratio, 2.41 [95% CI, 1.04-5.58]) were higher in the tortuous group. In the tortuous group, the FPE rate was similar in patients who underwent combined stent retriever and contact aspiration thrombectomy and in those who underwent either procedure alone (22% versus 19%; P=0.80). However, in the nontortuous group, the FPE rate was significantly higher in patients who underwent combined stent retriever and contact aspiration (52% versus 35%; P=0.02). CONCLUSIONS: ICA tortuosity was independently associated with reduced likelihood of FPE and increased risk of postmechanical thrombectomy intracranial hemorrhage. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02251665.


Asunto(s)
Arteria Carótida Interna , Accidente Cerebrovascular , Trombectomía , Arteria Carótida Interna/cirugía , Infarto Cerebral , Femenino , Humanos , Hemorragias Intracraneales/etiología , Masculino , Estudios Retrospectivos , Stents , Accidente Cerebrovascular/cirugía , Trombectomía/efectos adversos , Trombectomía/métodos , Resultado del Tratamiento
13.
Epilepsia ; 63(10): 2623-2636, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35892321

RESUMEN

OBJECTIVE: The mechanisms underlying accelerated long-term forgetting (ALF) in patients with epilepsy are still under investigation. We examined the contribution of hippocampal subfields and their morphology to long-term memory performance in patients with focal epilepsy. METHODS: We prospectively assessed long-term memory and performed magnetic resonance imaging in 80 patients with focal epilepsy (61 with temporal lobe epilepsy and 19 with extratemporal lobe epilepsy) and 30 healthy controls. The patients also underwent electroencephalography recording. Verbal and visuospatial memory was tested 30 s, 10 min, and 1 week after learning. We assessed the volumes of the whole hippocampus and seven subfields and deformation of the hippocampal shape. The contributions of the hippocampal volumes and shape deformation to long-term forgetting, controlling for confounding factors, including the presence of interictal epileptiform discharges, were assessed by multiple regression analyses. RESULTS: Patients with focal epilepsy had lower intelligence quotients and route recall scores at 10 min than controls. The focal epilepsy group had smaller volumes of both the right and left hippocampal tails than the control group, but there were no statistically significant group differences for the volumes of the whole hippocampus or other hippocampal subfields. Multiple regression analyses showed a significant association between the left CA1 volume and the 1-week story retention (ß = 7.76; Bonferroni-corrected p = 0.044), but this was not found for the whole hippocampus or other subfield volumes. Hippocampal shape analyses revealed that atrophy of the superior-lateral, superior-central, and inferior-medial regions of the left hippocampus, corresponding to CA1 and CA2/3, was associated with the verbal retention rate. SIGNIFICANCE: Our results suggest that atrophy of the hippocampal CA1 region and its associated structures disrupts long-term memory consolidation in focal epilepsy. Neuronal cell loss in specific hippocampal subfields could be a key underlying cause of ALF in patients with epilepsy.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Atrofia/patología , Epilepsias Parciales/complicaciones , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Convulsiones/complicaciones , Lóbulo Temporal/patología
14.
Telemed J E Health ; 28(3): 433-439, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34185602

RESUMEN

Introduction: Telemedicine conferencing is expected to become commonly used internationally. However, national reports on internationally related telemedicine are limited, and related activities and challenges in each country are unclear. In this study, we aimed to clarify the current status and barriers to international telemedicine conferencing in Japan. Methods: The questionnaire was sent to the Internationalization Project Team (I-PT) representatives in all 43 Japanese National University Hospitals. The total of 167 assigned staff comprised 86 medical staff in charge of internationalization (MI) and 81 technical staff in telemedicine (TT). Results: The response rate was 93% (40/43 universities) from 88 staff (44 MI and 44 TT). Most respondents (75%) stated that they had not been active in international telemedicine conferencing during the past 3 years, although a videoconferencing system was installed in 93% of universities. A total of 65% respondents felt that barriers to promoting telemedicine and conferencing existed. Most (43%) respondents reported staff shortage as the most serious barrier overall. Five TT (19%) felt that the most serious barrier was difficulty with English communication, although no MI selected this as a barrier. More MI than TT felt that technical issues were the most serious barrier (MI: 4/29, TT: 1/27). Conclusions: International telemedicine conferencing was found to be insufficiently active in I-PT of Japan, although the installed equipment and technical expertise of TT seemed adequate. This indicates that merely assigning MI and TT to an I-PT is not enough and that improved cooperation between both MI and TT at each university hospital is needed. Establishment of a structured international telemedicine center in each university hospital is to be suggested to accelerate the activities in Japan.


Asunto(s)
Telemedicina , Comunicación por Videoconferencia , Hospitales Universitarios , Humanos , Internacionalidad , Japón , Encuestas y Cuestionarios , Comunicación por Videoconferencia/estadística & datos numéricos
15.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555685

RESUMEN

Connexin 30 (Cx30), which forms gap junctions between astrocytes, regulates cell adhesion and migration, and modulates glutamate transport. Cx30 is upregulated on activated astroglia in central nervous system inflammatory lesions, including spinal cord lesions in mutant superoxide dismutase 1 (mSOD1) transgenic amyotrophic lateral sclerosis (ALS) model mice. Here, we investigated the role of Cx30 in mSOD1 mice. Cx30 was highly expressed in the pre-onset stage in mSOD1 mice. mSOD1 mice with knockout (KO) of the Cx30 gene (Cx30KO-mSOD1 mice) showed delayed disease onset and tended to have an extended survival period (log-rank, p = 0.09). At the progressive and end stages of the disease, anterior horn cells were significantly preserved in Cx30KO-mSOD1 mice. In lesions of these mice, glial fibrillary acidic protein/C3-positive inflammatory astroglia were decreased. Additionally, the activation of astrocytes in Cx30KO-mSOD1 mice was reduced compared with mSOD1 mice by gene expression microarray. Furthermore, expression of connexin 43 at the pre-onset stage was downregulated in Cx30KO-mSOD1 mice. These findings suggest that reduced expression of astroglial Cx30 at the early disease stage in ALS model mice protects neurons by attenuating astroglial inflammation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Conexina 30 , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Conexina 30/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inflamación/metabolismo , Ratones Transgénicos , Médula Espinal/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
16.
J Neuroinflammation ; 17(1): 206, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32646493

RESUMEN

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) caused by JC virus (JCV) is a rare but serious complication of some disease-modifying drugs used to treat multiple sclerosis (MS). Japanese MS patients treated with fingolimod were reported to be 10 times more likely to develop PML than equivalent patients in other countries. The strongest susceptibility human leukocyte antigen (HLA) class II alleles for MS are distinct between races (DRB1*15:01 for Caucasians and DRB1*04:05 and DRB1*15:01 for Japanese); therefore, we investigated whether HLA class II alleles modulate anti-JCV antibody serostatus in Japanese MS patients with and without fingolimod. METHODS: We enrolled 128 Japanese patients with MS, in whom 64 (50%) were under fingolimod treatment at sampling, and examined the relationship between HLA class II alleles and anti-JCV antibody serostatus. Serum anti-JCV antibody positivity and index were measured using a second-generation two-step assay and HLA-DRB1 and -DPB1 alleles were genotyped. RESULTS: HLA-DRB1*15 carriers had a lower frequency of anti-JCV antibody positivity (57% vs 78%, p = 0.015), and lower antibody index (median 0.42 vs 1.97, p = 0.037) than non-carriers. Among patients without HLA-DRB1*15, DRB1*04 carriers had a higher seropositivity rate than non-carriers (84% vs 54%, p = 0.030), and DPB1*04:02 carriers had a higher anti-JCV antibody index than non-carriers (3.20 vs 1.34, p = 0.008) although anti-JCV antibody-positivity rates did not differ. Patients treated with fingolimod had a higher antibody index than other patients (1.46 vs 0.64, p = 0.039) and treatment period had a positive correlation with antibody index (p = 0.018). Multivariate logistic regression analysis revealed that age was positively associated, and HLA-DRB1*15 was negatively associated with anti-JCV antibody positivity (odds ratio [OR] = 1.06, p = 0.006, and OR = 0.37, p = 0.028, respectively). Excluding HLA-DRB1*15-carriers, DRB1*04 was an independent risk factor for the presence of anti-JCV antibody (OR = 5.50, p = 0.023). CONCLUSIONS: HLA-DRB1*15 is associated with low anti-JCV antibody positive rate and low JCV antibody index, and in the absence of DRB1*15, DRB1*04 carriers are associated with a high antibody positive rate in Japanese, suggesting the effects of two susceptible HLA-DRB1 alleles on anti-JCV antibody serostatus differ.


Asunto(s)
Alelos , Clorhidrato de Fingolimod/uso terapéutico , Cadenas HLA-DRB1/sangre , Inmunosupresores/uso terapéutico , Virus JC/metabolismo , Esclerosis Múltiple/sangre , Adulto , Anciano , Biomarcadores/sangre , Femenino , Clorhidrato de Fingolimod/farmacología , Predisposición Genética a la Enfermedad/genética , Cadenas HLA-DRB1/genética , Humanos , Inmunosupresores/farmacología , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética
17.
Neuropathology ; 40(1): 109-115, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31775183

RESUMEN

Linear scleroderma is a variant of localized scleroderma. We report a 43-year-old woman who had developed left arm weakness and linear scleroderma on her back during pregnancy at 25 years of age, followed by left hemifacial atrophy and left leg weakness. She had multiple linear scleroderma lesions on her trunk and left limbs, left eyelid ptosis, impairment of vertical movement and abduction of the left eye, left hemifacial atrophy, and weakness and atrophy of the sternocleidomastoid, trapezius, and proximal limb muscles on the left side. On serology, antibodies to U1-ribonucleoprotein and Jo-1 were positive; anti-scleroderma-70 antibody was negative. Skin biopsy demonstrated increased hypertrophic collagen fibers without inflammatory infiltrates. Needle electromyography of left limb muscles revealed mild neurogenic patterns; left quadriceps muscle biopsy showed chronic neurogenic changes. Brain magnetic resonance imaging revealed mild left hemispheric atrophy. This is a rare case of linear scleroderma and Parry-Romberg syndrome presenting with widespread ipsilateral neurogenic manifestations.


Asunto(s)
Hemiatrofia Facial/complicaciones , Hemiatrofia Facial/diagnóstico por imagen , Esclerodermia Localizada/complicaciones , Esclerodermia Localizada/diagnóstico por imagen , Adulto , Diagnóstico Diferencial , Hemiatrofia Facial/sangre , Femenino , Humanos , Esclerodermia Localizada/sangre
18.
J Neuroinflammation ; 16(1): 179, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519178

RESUMEN

BACKGROUND: We previously reported that Vδ2+Vγ9+ γδ T cells were significantly decreased in multiple sclerosis (MS) patients without disease-modifying therapies (untreated MS) and were negatively correlated with Expanded Disability Status Scale (EDSS) scores, suggesting protective roles of Vδ2+Vγ9+ γδ T cells. Interferon-ß (IFN-ß) is one of the first-line disease-modifying drugs for MS. However, no previous studies have reported changes in γδ T cell subsets under IFN-ß treatment. Therefore, we aimed to clarify the effects of the long-term usage of IFN-ß on γδ T cell subsets in MS patients. METHODS: Comprehensive flow cytometric immunophenotyping was performed in 35 untreated MS and 21 MS patients on IFN-ß for more than 2 years (IFN-ß-treated MS) including eight super-responders fulfilling no evidence of disease activity criteria, and 44 healthy controls (HCs). RESULTS: The percentages of Vδ2+Vγ9+ cells in γδ T cells were significantly lower in untreated and IFN-ß-treated MS patients than in HCs. By contrast, the percentages of Vδ1-Vδ2-Vγ9- cells in γδ T cells were markedly higher in IFN-ß-treated MS patients than in HCs and untreated MS patients (both p < 0.001). A significant negative correlation between the percentages of Vδ2+Vγ9+ cells in γδ T cells and EDSS scores was confirmed in untreated MS but not evident in IFN-ß-treated MS. Moreover, class-switched memory B cells were decreased in IFN-ß-treated MS compared with HCs (p < 0.001) and untreated MS patients (p = 0.006). Interestingly, the percentages of Vδ1-Vδ2-Vγ9- cells in γδ T cells were negatively correlated with class-switched memory B cell percentages in all MS patients (r = - 0.369, p = 0.005), and the percentages of Vδ1-Vδ2-Vγ9- cells in Vδ1-Vδ2- γδ T cells were negatively correlated with EDSS scores only in IFN-ß super-responders (r = - 0.976, p < 0.001). CONCLUSIONS: The present study suggests that long-term usage of IFN-ß increases Vδ1-Vδ2-Vγ9- γδ T cells, which are associated with a better outcome, especially in IFN-ß super-responders. Thus, increased Vδ1-Vδ2-Vγ9- cells together with decreased class-switched memory B cells may contribute to the suppression of disease activity in MS patients under IFN-ß treatment.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Interferón beta/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Subgrupos de Linfocitos T/efectos de los fármacos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T gamma-delta , Subgrupos de Linfocitos T/inmunología
19.
J Autoimmun ; 101: 56-69, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010726

RESUMEN

The molecular events underlying the transition from initial inflammatory flares to the progressive phase of multiple sclerosis (MS) remain poorly understood. Here, we report that the microtubule-associated protein (MAP) Tau exerts a gender-specific protective function on disease progression in the MS model experimental autoimmune encephalomyelitis (EAE). A detailed investigation of the autoimmune response in Tau-deficient mice excluded a strong immunoregulatory role for Tau, suggesting that its beneficial effects are presumably exerted within the central nervous system (CNS). Spinal cord transcriptomic data show increased synaptic dysfunctions and alterations in the NF-kB activation pathway upon EAE in Tau-deficient mice as compared to wildtype animals. We also performed the first comprehensive characterization of Tau post-translational modifications (PTMs) in the nervous system upon EAE. We report that the methylation levels of the conserved lysine residue K306 are significantly decreased in the chronic phase of the disease. By combining biochemical assays and molecular dynamics (MD) simulations, we demonstrate that methylation at K306 decreases the affinity of Tau for the microtubule network. Thus, the down-regulation of this PTM might represent a homeostatic response to enhance axonal stability against an autoimmune CNS insult. The results, altogether, position Tau as key mediator between the inflammatory processes and neurodegeneration that seems to unify many CNS diseases.


Asunto(s)
Regulación de la Expresión Génica , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Neuronas/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Proteínas tau/metabolismo , Animales , Autoinmunidad , Línea Celular , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Femenino , Redes Reguladoras de Genes , Masculino , Metilación , Ratones , Ratones Noqueados , Modelos Moleculares , Esclerosis Múltiple/patología , Transducción de Señal , Relación Estructura-Actividad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Transcripción Genética , Proteínas tau/química
20.
J Neuroinflammation ; 15(1): 72, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29514694

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is characterized by increased activation of peripheral blood mononuclear cells (PBMCs), linked to perturbations in the phosphorylation of signaling proteins. METHODS: We developed a phosphoflow cytometry protocol to assess the levels of 11 phosphorylated nuclear proteins at baseline conditions and after cell activation in distinct PBMC populations from 41 treatment-naïve relapsing-remitting (RR) MS subjects and 37 healthy controls, and in a second cohort of 9 untreated RRMS patients and 10 secondary progressive (SP) MS patients. Levels of HLA-ABC, HLA-E, and HLA-DR were also assessed. Phosphorylation levels of selected proteins were also assessed in mouse splenocytes isolated from myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE). RESULTS: Modest differences were observed at baseline between patients and controls, with general lower phosphorylation levels in cells from affected individuals. Conversely, a dramatic increase in phosphorylated p38MAPK and STAT proteins was observed across all cell types in MS patients compared to controls after in vitro activation. A similar phosphorylation profile was observed in mouse lymphocytes primed in vivo with MOG. Furthermore, levels of all p-STAT proteins were found directly correlated with HLA expression in monocytes. Levels of phosphorylated proteins did not differ between relapsing-remitting and secondary progressive MS patients either in baseline conditions or after stimulation. Lastly, phosphorylation levels appear to be independent of the genotype. CONCLUSION: The response to IFN-α through STAT proteins signaling is strongly dysregulated in MS patients irrespective of disease stage. These findings suggest that the aberrant activation of this pathway could lead to changes in the expression of HLA molecules in antigen presenting cells, which are known to play important roles in the regulation of the immune response in health and disease.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Esclerosis Múltiple/patología , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología , Adulto , Animales , Estudios de Casos y Controles , Estudios de Cohortes , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Citometría de Flujo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fosforilación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda