Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nature ; 615(7950): 127-133, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813966

RESUMEN

Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.


Asunto(s)
Técnicas de Cultivo de Célula , Proliferación Celular , Citocinas , Células Madre Hematopoyéticas , Humanos , Proliferación Celular/efectos de los fármacos , Células Clonales/citología , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Sangre Fetal/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Técnicas de Cultivo de Célula/métodos , Albúminas , Caprolactama , Polímeros , Receptores de Trombopoyetina , Trasplante Heterólogo , Análisis de Expresión Génica de una Sola Célula
2.
Biochem Biophys Res Commun ; 715: 149984, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688056

RESUMEN

Epstein-Barr virus (EBV) and other viral infections are possible triggers of autoimmune diseases, such as rheumatoid arthritis (RA). To analyze the causative relationship between EBV infections and RA development, we performed experiment on humanized NOD/Shi-scid/IL-2RγCnull (hu-NOG) mice reconstituted human immune system components and infected with EBV. In EBV-infected hu-NOG mice, breakdown of knee joint bones was found to be accompanied by the accumulation of receptor activator of nuclear factor-κB (NF-κB) (RANK) ligand (RANKL), a key factor in osteoclastogenesis, human CD19 and EBV-encoded small RNA (EBER)-bearing cells. Accumulation of these cells expanded in the bone marrow adjacent to the bone breakage, showing a histological feature like to that in bone marrow edema. On the other hand, human RANK/human matrix metalloprotease-9 (MMP-9) positive, osteoclast-like cells were found at broken bone portion of EBV-infected mouse knee joint. In addition, human macrophage-colony stimulating factor (M-CSF), an essential factor in development of osteoclasts, evidently expressed in spleen and bone marrow of EBV-infected humanized mice. Furthermore, RANKL and M-CSF were identified at certain period of EBV-transformed B lymphoblastoid cells (BLBCs) derived from umbilical cord blood lymphocytes. Co-culturing bone marrow cells of hu-NOG mice with EBV-transformed BLBCs resulted in the induction of a multinucleated cell population positive for tartrate-resistant acid phosphatase and human MMP-9 which indicating human osteoclast-like cells. These findings suggest that EBV-infected BLBCs induce human aberrant osteoclastogenesis, which cause erosive arthritis in the joints.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Ratones Endogámicos NOD , Ratones SCID , Osteoclastos , Animales , Ratones , Humanos , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoclastos/virología , Osteoclastos/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/patología , Ligando RANK/metabolismo , Herpesvirus Humano 4/inmunología , Osteogénesis , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Artritis Reumatoide/virología , Artritis Reumatoide/metabolismo
3.
Biochem Biophys Res Commun ; 663: 132-141, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37121123

RESUMEN

Primary human hepatocytes (PHHs) have been commonly used as the gold standard in many drug metabolism studies, regardless of having large inter-individual variation. These inter-individual variations in PHHs arise primarily from genetic polymorphisms, as well as from donor health conditions and storage conditions prior to cell processing. To equalize the effects of the latter two factors, PHHs were transplanted to quality-controlled mice providing human hepatocyte proliferation niches, and engrafted livers were generated. Cells that were harvested from engrafted livers, call this as experimental human hepatocytes (EHH; termed HepaSH cells), were stably and reproducibly produced from 1014 chimeric mice produced by using 17 different PHHs. Expression levels of acute phase reactant (APR) genes as indicators of a systemic reaction to the environmental/inflammatory insults of liver donors varied widely among PHHs. In contrast to PHHs, the expression of APR genes in HepaSH cells was found to converge within a narrower range than in donor PHHs. Further, large individual differences in the expression levels of drug metabolism-related genes (28 genes) observed in PHHs were greatly reduced among HepaSH cells produced in a unified in vivo environment, and none deviated from the range of gene expression levels in the PHHs. The HepaSH cells displayed a similar level of drug-metabolizing enzyme activity and gene expression as the average PHHs but retained their characteristics for drug-metabolizing enzyme gene polymorphisms. Furthermore, long-term 2D culture was possible and HBV infection was confirmed. These results suggest that the stably and reproducibly providable HepaSH cells with lesser inter-individual differences in drug-metabolizing properties, may have a potential to substitution for PHH as practical standardized human hepatocytes in drug discovery research.


Asunto(s)
Hepatocitos , Hígado , Humanos , Animales , Ratones , Hepatocitos/metabolismo
4.
Int Immunol ; 33(3): 183-189, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027513

RESUMEN

Food allergy is a common disease caused by intake of allergen-containing foods, such as milk, eggs, peanuts and wheat. Systemic anaphylaxis is a severe hypersensitive allergic reaction resulting from degranulation of mast cells or basophils after cross-linking of surface high-affinity IgE receptors (Fcε-RI) with allergen-specific IgE and allergens. In this study, we developed a novel human mast cell/basophil-engrafted mouse model that recapitulates systemic anaphylaxis triggered by ß-lactoglobulin (BLG), a major allergen found in cow's milk. Human CD34+ hematopoietic stem cells were transferred into NOG (non-Tg) or NOG hIL-3/hGM-CSF transgenic (Tg) mice. After 14-16 weeks, bovine BLG-specific human IgE was intravenously injected into humanized mice, followed by intravenous or oral bovine BLG exposure 1 day later. Body temperature in Tg, but not in non-Tg, mice gradually decreased within 10 min, and 80% of Tg mice died within 1 h by intravenous BLG exposure. Serum histamine levels and anaphylaxis scores in Tg mice were markedly increased compared to non-Tg mice. Furthermore, these allergic symptoms were significantly inhibited by epinephrine treatment of the Tg mice. Therefore, the current NOG hIL-3/hGM-CSF Tg mouse model may be useful for development of novel anaphylaxis drugs for treatment of food allergies and for safety assessment of low-allergenicity extensively hydrolyzed cow's milk whey protein-based infant formulas.


Asunto(s)
Anafilaxia/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Inmunoglobulina E/inmunología , Lactoglobulinas/inmunología , Hipersensibilidad a la Leche/inmunología , Anafilaxia/mortalidad , Animales , Basófilos/inmunología , Bovinos , Modelos Animales de Enfermedad , Epinefrina/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Histamina/sangre , Humanos , Interleucina-3/genética , Interleucina-3/metabolismo , Mastocitos/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos
5.
Cancer Sci ; 111(12): 4336-4347, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33037737

RESUMEN

Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy against solid tumors. The novel small molecule PTC596 directly binds tubulin, inhibits microtubule polymerization, downregulates MCL-1, and induces p53-independent apoptosis in acute myeloid leukemia cells. We herein investigated the efficacy of PTC-028, a structural analog of PTC596, for myelodysplastic syndrome (MDS). PTC-028 suppressed growth and induced apoptosis in MDS cell lines. The efficacy of PTC028 in primary MDS samples was confirmed using cell proliferation assays. PTC-028 synergized with hypomethylating agents, such as decitabine and azacitidine, to inhibit growth and induce apoptosis in MDS cells. Mechanistically, a treatment with PTC-028 induced G2/M arrest followed by apoptotic cell death. We also assessed the efficacy of PTC-028 in a xenograft mouse model of MDS using the MDS cell line, MDS-L, and the AkaBLI bioluminescence imaging system, which is composed of AkaLumine-HCl and Akaluc. PTC-028 prolonged the survival of mice in xenograft models. The present results suggest a chemotherapeutic strategy for MDS through the disruption of microtubule dynamics in combination with DNA hypomethylating agents.


Asunto(s)
Bencimidazoles/farmacología , Síndromes Mielodisplásicos/tratamiento farmacológico , Pirazinas/farmacología , Moduladores de Tubulina/farmacología , Animales , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Bencimidazoles/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Decitabina/farmacología , Fase G2/efectos de los fármacos , Células HL-60 , Xenoinjertos , Humanos , Ratones , Síndromes Mielodisplásicos/genética , Paclitaxel/farmacología , Pirazinas/uso terapéutico , Análisis de Secuencia de ARN/métodos , Tubulina (Proteína)/efectos de los fármacos , Moduladores de Tubulina/uso terapéutico , Vincristina/farmacología
6.
Biochem Biophys Res Commun ; 516(2): 480-485, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31230747

RESUMEN

Although Th17 cells are closely linked to cutaneous graft-versus-host-disease (GVHD) in mouse models, this association remains unclear in human GVHD. In this study, we established a novel xenogeneic cutaneous GVHD model using humanized mice. To induce the differentiation of human Th17 cells, we created transgenic NOG mice expressing human IL-1ß and IL-23 cytokines (hIL-1ß/23 Tg) and transplanted with human CD4+ T cells. The pathologies of cutaneous GVHD, such as a decrease in body weight, alopecia, and T cell inflammation in the skin, were observed much earlier in hIL-1ß/23 Tg mice compared with non-Tg mice after human CD4+ T cell transplantation. In the skin of Tg mice, IL-17- and IFNγ-producing pathogenic Th17 cells were significantly accumulated. Furthermore, high infiltration of murine neutrophils was seen in the skin of Tg mice, but not non-Tg mice, which may have been the cause of the severe alopecia. CD4+ T-cell-transferred hIL-1ß/23 Tg mice were therefore highly sensitive models for inducing cutaneous GVHD mediated by human pathogenic Th17 cells.


Asunto(s)
Progresión de la Enfermedad , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Trasplante de Piel/efectos adversos , Células Th17/patología , Animales , Humanos , Interferón gamma/metabolismo , Recuento de Linfocitos , Ratones Transgénicos
7.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167385

RESUMEN

The prevalence rates of allergic diseases are increasing worldwide, particularly in industrial countries. To date, many mouse models have been generated for allergy research; studies conducted using these models have suggested the importance of cross-talk between immune cells and tissue-resident non-immune cells in the onset of allergic diseases. However, there are several differences between the immune systems of rodents and humans, and human studies are limited. Thus, mice reconstituted with human immune cells are a novel tool for the preclinical evaluation of the efficacy and safety of developing drugs. Genetic technologies for generating humanized mice have improved markedly in recent years. In this review, we will discuss recent progress in allergy research using humanized mice and introduce our recent humanized mouse model of airway inflammation in human immune cells.


Asunto(s)
Hipersensibilidad/inmunología , Investigación , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Ratones Transgénicos
8.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888191

RESUMEN

Peptide vaccination was developed for the prevention and therapy of acute and chronic infectious diseases and cancer. However, vaccine development is challenging, because the patient immune system requires the appropriate human leukocyte antigen (HLA) recognition with the peptide. Moreover, antigens sometimes induce a low response, even if the peptide is presented by antigen-presenting cells and T cells recognize it. This is because the patient immunity is dampened or restricted by environmental factors. Even if the immune system responds appropriately, newly-developed immune checkpoint inhibitors (ICIs), which are used to increase the immune response against cancer, make the immune environment more complex. The ICIs may activate T cells, although the ratio of responsive patients is not high. However, the vaccine may induce some immune adverse effects in the presence of ICIs. Therefore, a system is needed to predict such risks. Humanized mouse systems possessing human immune cells have been developed to examine human immunity in vivo. One of the systems which uses transplanted human peripheral blood mononuclear cells (PBMCs) may become a new diagnosis strategy. Various humanized mouse systems are being developed and will become good tools for the prediction of antibody response and immune adverse effects.


Asunto(s)
Inmunoterapia , Vacunas de Subunidad/inmunología , Animales , Formación de Anticuerpos , Humanos , Sistema Inmunológico/metabolismo , Terapia de Inmunosupresión , Ratones , Modelos Animales
9.
J Cell Physiol ; 233(5): 3723-3728, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28598567

RESUMEN

Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped , Hipersensibilidad , Ratones , Neoplasias , Animales , Humanos , Ratones SCID
10.
Biol Blood Marrow Transplant ; 24(8): 1563-1574, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29678638

RESUMEN

Xenogeneic graft-versus-host disease (GVHD) models in highly immunodeficient mice are currently being used worldwide to investigate human immune responses against foreign antigens in vivo. However, the individual roles of CD4+ and CD8+ T cells, and donor/host hematopoietic and nonhematopoietic antigen-presenting cells (APCs) in the induction and development of GVHD have not been fully investigated. In the present study, we comprehensively investigated the immune responses of human T cells and the antigen presentation capacity of donor/host hematopoietic and nonhematopoietic APCs in xenogeneic GVHD models using nonobese diabetic/Shi-scid-IL2rgnull mice. CD4+ T cells and, to a lesser extent, CD8+ T cells individually mediated potentially lethal GVHD. In addition to inflammatory cytokine production, CD4+ T cells also supported the activation and proliferation of CD8+ T cells. Using bone marrow chimeras, we demonstrated that host hematopoietic, but not nonhematopoietic, APCs play a critical role in the development of CD4+ T cell-mediated GVHD. During early GVHD, we detected 2 distinct populations in memory CD4+ T cells. One population was highly activated and proliferated in major histocompatibility complex antigen (MHC)+/+ mice but not in MHC-/- mice, indicating alloreactive T cells. The other population showed a less activated and slowly proliferative status regardless of host MHC expression, and was associated with higher susceptibility to apoptosis, indicating nonalloreactive T cells in homeostasis-driven proliferation. These observations are clinically relevant to donor T cell response after allogeneic hematopoietic stem cell transplantation. Our findings provide a better understanding of the immunobiology of humanized mice and support the development of novel options for the prevention and treatment for GVHD.


Asunto(s)
Presentación de Antígeno , Células Presentadoras de Antígenos , Enfermedad Injerto contra Huésped/inmunología , Xenoinjertos/inmunología , Linfocitos T/citología , Animales , Proliferación Celular , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Cinética , Activación de Linfocitos , Ratones SCID , Linfocitos T/inmunología , Trasplante Homólogo/efectos adversos
12.
J Immunol ; 194(7): 3513-25, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25712215

RESUMEN

We generated a severe immunodeficient NOD/Shi-scid-IL-2Rγ(null) (NOG) mouse substrain expressing the transgenic human IL-2 gene (NOG-IL-2 Tg). Upon transfer of human cord blood-derived hematopoietic stem cells (HSCs), CD3(-)CD56(high)CD16(+/-) cells developed unexpectedly, predominantly in the NOG-IL-2 Tg (hu-HSC NOG-IL-2 Tg). These cells expressed various NK receptors, including NKp30, NKp44, NKp46, NKG2D, and CD94, as well as a diverse set of killer cell Ig-like receptor molecules at levels comparable to normal human NK cells from the peripheral blood, which is evidence of their maturity. They produced levels of granzyme A as high as in human peripheral blood-derived NK cells, and a considerable amount of perforin protein was detected in the plasma. Human NK cells in hu-HSC NOG-IL-2 Tg produced IFN-γ upon stimulation, and IL-2, IL-15, or IL-12 treatment augmented the in vitro cytotoxicity. Inoculation of K562 leukemia cells into hu-HSC NOG-IL-2 Tg caused complete rejection of the tumor cells, whereas inoculation into hu-HSC NOG fully reconstituted with human B, T, and some NK cells did not. Moreover, when a CCR4(+) Hodgkin's lymphoma cell line was inoculated s.c. into hu-HSC NOG-IL-2 Tg, the tumor growth was significantly suppressed by treatment with a therapeutic humanized anti-CCR4 Ab (mogamulizumab), suggesting that the human NK cells in the mice exerted active Ab-dependent cellular cytotoxicity in vivo. Taken together, these data suggest that the new NOG-IL-2 Tg strain is a unique model that can be used to investigate the biological and pathological functions of human NK cells in vivo.


Asunto(s)
Interleucina-2/biosíntesis , Interleucina-2/genética , Células Asesinas Naturales/inmunología , Ratones Transgénicos , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos de Superficie/metabolismo , Diferenciación Celular , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Fenotipo , Receptores KIR/genética , Receptores KIR/metabolismo
13.
Biochem Biophys Res Commun ; 456(1): 219-24, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25462565

RESUMEN

The development of severe immunodeficient mouse strains containing various human genes, including cytokines or HLA, has enabled the reconstitution of functional human immune systems after transplantation of human hematopoietic stem cells (HSC). Accumulating evidence has suggested that HLA-restricted antigen-specific human T-cell responses can be generated in these humanized mice. To directly monitor immune responses of human CD4(+) T cells, we introduced ß-lactoglobulin (BLG)-specific T cell receptor (TCR) genes derived from CD4(+) T-cell clones of cow-milk allergy patients into HSCs, and subsequently transplanted them into NOG-HLA-DR4 transgenic/I-Aß deficient mice (NOG-DR4/I-A(o)). In the thymus, thymocytes with BLG-specific TCR preferentially differentiated into CD4(+)CD8(-) single-positive cells. Adoptive transfer of mature CD4(+) T cells expressing the TCR into recipient NOG-DR4/I-A(o) mice demonstrated that human CD4(+) T cells proliferated in response to antigenic stimulation and produced IFN-γ in vivo, suggesting that functional T-cell reactions (especially Th1-skewed responses) were induced in humanized mice.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Regulación de la Expresión Génica , Antígeno HLA-DR4/genética , Receptores de Antígenos de Linfocitos T/genética , Traslado Adoptivo , Animales , Antígenos CD34/metabolismo , Proliferación Celular , Trasplante de Células , Ensayo de Immunospot Ligado a Enzimas , Células HEK293 , Células Madre Hematopoyéticas/citología , Humanos , Interferón gamma/metabolismo , Lactoglobulinas/metabolismo , Lentivirus/genética , Leucocitos Mononucleares/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Timocitos/citología
14.
J Immunol ; 191(6): 2890-9, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23956433

RESUMEN

The development of animal models that mimic human allergic responses is crucial to study the pathophysiology of disease and to generate new therapeutic methodologies. Humanized mice reconstituted with human immune systems are essential to study human immune reactions in vivo and are expected to be useful for studying human allergies. However, application of this technology to the study of human allergies has been limited, largely because of the poor development of human myeloid cells, especially granulocytes and mast cells, which are responsible for mediating allergic diseases, in conventional humanized mice. In this study, we developed a novel transgenic (Tg) strain, NOD/Shi-scid-IL2rγ(null) (NOG), bearing human IL-3 and GM-CSF genes (NOG IL-3/GM-Tg). In this strain, a large number of human myeloid cells of various lineages developed after transplantation of human CD34⁺ hematopoietic stem cells. Notably, mature basophils and mast cells expressing FcεRI were markedly increased. These humanized NOG IL-3/GM-Tg mice developed passive cutaneous anaphylaxis reactions when administered anti-4-hydroxy-3-nitrophenylacetyl IgE Abs and 4-hydroxy-3-nitrophenylacetyl. More importantly, a combination of serum from Japanese cedar pollinosis patients and cedar pollen extract also elicited strong passive cutaneous anaphylaxis responses in mice. Thus, to our knowledge, our NOG IL-3/GM-Tg mice are the first humanized mouse model to enable the study of human allergic responses in vivo and are excellent tools for preclinical studies of allergic diseases.


Asunto(s)
Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Hipersensibilidad/inmunología , Interleucina-3/inmunología , Animales , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunohistoquímica , Interleucina-3/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
15.
Nature ; 459(7246): 523-7, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19478777

RESUMEN

The common marmoset (Callithrix jacchus) is increasingly attractive for use as a non-human primate animal model in biomedical research. It has a relatively high reproduction rate for a primate, making it potentially suitable for transgenic modification. Although several attempts have been made to produce non-human transgenic primates, transgene expression in the somatic tissues of live infants has not been demonstrated by objective analyses such as polymerase chain reaction with reverse transcription or western blots. Here we show that the injection of a self-inactivating lentiviral vector in sucrose solution into marmoset embryos results in transgenic common marmosets that expressed the transgene in several organs. Notably, we achieved germline transmission of the transgene, and the transgenic offspring developed normally. The successful creation of transgenic marmosets provides a new animal model for human disease that has the great advantage of a close genetic relationship with humans. This model will be valuable to many fields of biomedical research.


Asunto(s)
Animales Modificados Genéticamente/genética , Callithrix/genética , Modelos Animales de Enfermedad , Células Germinativas/metabolismo , Herencia/genética , Transgenes/genética , Animales , Animales Recién Nacidos , Callithrix/embriología , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Transcripción Genética
16.
J Immunol ; 189(9): 4313-20, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23018460

RESUMEN

Xenograft animal models using immunodeficient mice have been widely applied in medical research on various human diseases. NOD/Shi-scid-IL2rγ(null) (NOG) mice are known to show an extremely high engraftment rate of xenotransplants compared with conventional immunodeficient mice. This high engraftment rate of xenotransplants in NOG mice was substantially suppressed by the transfer of spleen cells from NOD-scid mice that were devoid of NK cells. These results indicate that cell types other than splenic NK cells present in NOD-scid mice but not in NOG mice may be involved in this suppression. To identify the cell types responsible for this effect, we transferred subpopulations of spleen cells from NOD-scid mice into NOG mice and assessed the levels of human cell engraftment after human PBMC (hPBMC) transplantation. These experiments revealed that CD11c(+)B220(+) plasmacytoid dendritic cells (pDCs) from NOD-scid mice markedly inhibited engraftment of human cells. The CD11c(+)B220(+)CD122(+) cells further fractionated from the pDCs based on the expression of CD122, which is an NK cell marker strongly inhibited during hPBMC engraftment in NOG mice. Moreover, the CD122(+) cells in the pDC fraction were morphologically distinguishable from conventional CD122(+) NK cells and showed a higher rejection efficiency. The current results suggest that CD11c(+)B220(+)CD122(+) cells play an important role in xenograft rejection, and their absence in NOG mice may be critical in supporting the successful engraftment of xenotransplants.


Asunto(s)
Antígeno CD11c , Supervivencia de Injerto/inmunología , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad beta del Receptor de Interleucina-2/deficiencia , Antígenos Comunes de Leucocito/deficiencia , Trasplante Heterólogo/métodos , Animales , Antígeno CD11c/biosíntesis , Antígeno CD11c/genética , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Supervivencia de Injerto/genética , Humanos , Huésped Inmunocomprometido , Subunidad gamma Común de Receptores de Interleucina/biosíntesis , Subunidad beta del Receptor de Interleucina-2/biosíntesis , Subunidad beta del Receptor de Interleucina-2/genética , Antígenos Comunes de Leucocito/biosíntesis , Antígenos Comunes de Leucocito/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Bazo/inmunología , Bazo/metabolismo , Bazo/trasplante
17.
Int J Clin Oncol ; 19(6): 1005-10, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24532162

RESUMEN

OBJECTIVES: This study was conducted to evaluate the efficacy and safety of S-1 in patients with advanced non-small-cell lung cancer (NSCLC), receiving two or more prior chemotherapy regimens. METHODS: S-1 was administered orally for 14 consecutive days, followed by a 7-day rest period. This treatment course was repeated until disease progression or intolerable toxicity occurred. RESULTS: From 2010 to 2012, 45 patients were enrolled in this study. Of the 45 patients, 4 patients [8.9 %, 95 % confidence interval (CI) 0.6-17.2 %] exhibited a partial response and 24 patients (53.3 %) exhibited stable disease. The disease control rate was 62.2 % (95 % CI 48.1-76.4 %). Median progression-free survival was 71 days, and median survival time was 205 days. Four patients had grade 3 hematological toxicities, but toxicities of grade 4 were not observed in this study. CONCLUSION: Although S-1 monotherapy as third-line treatment or beyond was well tolerated, the response rate for this regimen did not demonstrate sufficient activity for patients with advanced NSCLC.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Ácido Oxónico/uso terapéutico , Tegafur/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Antimetabolitos Antineoplásicos/efectos adversos , Supervivencia sin Enfermedad , Combinación de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ácido Oxónico/efectos adversos , Tegafur/efectos adversos
18.
Front Mol Biosci ; 11: 1447315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228913

RESUMEN

Immune-related drug delivery systems (DDSs) in humanized mouse models are at the forefront of cancer research and serve as bridges between preclinical studies and clinical applications. These systems offer unique platforms for exploring new therapies and understanding their interactions with human cells and the immune system. Here, we focus on a DDS and a peripheral blood mononuclear cell (PBMC)-engrafted humanized mouse model that we recently developed, and consider some of the key components, challenges, and applications to advance these systems towards better cancer treatment on the basis of a better understanding of the immune response. Our DDS is unique and has a dual function, an anticancer effect and a capacity to fine-tune the immune reaction. The PBL-NOG-hIL-4-Tg mouse system is superior to other available humanized mouse systems for the development of such multifunctional DDSs because it supports the rapid reconstruction of an individual donor's immunity and avoids the onset of graft-versus-host disease.

19.
Biochem Biophys Rep ; 38: 101710, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38638674

RESUMEN

Progesterone suppresses several ancient pathways in a concentration-dependent manner. Based on these characteristics, progesterone is considered a candidate anticancer drug. However, the concentration of progesterone used for therapy should be higher than the physiological concentration, which makes it difficult to develop progesterone-based anticancer drugs. We previously developed liposome-encapsulated progesterone (Lipo-P4) with enhanced anticancer effects, which strongly suppressed triple-negative breast cancer cell proliferation in humanized mice. In this study, we aimed to clarify whether Lipo-P4 effectively suppresses the proliferation of B-lineage cancer cells. We selected six B-cell lymphoma and two myeloma cell lines, and analyzed their surface markers using flow cytometry. Next, we prepared liposome-encapsulated progesterone and examined its effect on cell proliferation in these B-lineage cancer cells, three ovarian clear cell carcinoma cell lines, two prostate carcinoma cell lines, and one triple-negative breast cancer adenocarcinoma cell line. Lipo-P4 suppressed the proliferation of all cancer cell lines. All B-lineage cell lines, except for the HT line, were more susceptible than the other cell types, regardless of the expression of differentiation markers. Empty liposomes did not suppress cell proliferation. These results suggest that progesterone encapsulated in liposomes efficiently inhibits the proliferation of B-lineage cells and may become an anticancer drug candidate for B-lineage cancers.

20.
Cell Rep Methods ; 4(8): 100833, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39121862

RESUMEN

The type I CRISPR system has recently emerged as a promising tool, especially for large-scale genomic modification, but its application to generate model animals by editing zygotes had not been established. In this study, we demonstrate genome editing in zygotes using the type I-E CRISPR-Cas3 system, which efficiently generates deletions of several thousand base pairs at targeted loci in mice with 40%-70% editing efficiency without off-target mutations. To overcome the difficulties associated with detecting the variable deletions, we used a newly long-read sequencing-based multiplex genotyping approach. Demonstrating remarkable versatility, our Cas3-based technique was successfully extended to rats as well as mice, even by zygote electroporation methods. Knockin for SNP exchange and genomic replacement with a donor plasmid were also achieved in mice. This pioneering work with the type I CRISPR zygote editing system offers increased flexibility and broader applications in genetic engineering across different species.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Cigoto , Animales , Cigoto/metabolismo , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Ratas , Ratones , Femenino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda