Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982349

RESUMEN

Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.


Asunto(s)
Serina-Treonina Quinasas TOR , Esclerosis Tuberosa , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/genética
2.
BMC Ophthalmol ; 21(1): 284, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301208

RESUMEN

BACKGROUND: To report the first Italian case of hypotrichosis with juvenile macular dystrophy complicated by macular neovascularization diagnosed through multimodal imaging. CASE PRESENTATION: An 11-year-old boy was referred to our Institution for bilateral maculopathy of unknown origin. Multimodal imaging helps the diagnosis of Juvenile Macular Dystrophy with Hypotrichosis (HJMD). Fundus examination showed several alterations of the retinal pigment epithelium and circular pigmented area of chorioretinal atrophy. Structural spectral domain optical coherence tomography (OCT) showed some backscattering phenomenon with several alterations of retinal pigment epithelium and photoreceptor layer in both eyes. Moreover, OCT showed hyperreflective lesion beneath the neuroepithelium in left eye. OCT angiography (OCT-A) revealed a pathologic neovascular network in choriocapillaris plexus, probably the result of a fibrovascular membrane. Multifocal electroretinograms (MfERGs) showed functional alterations in 12.22° of the central retina. In order to confirm the suspicion of HJMD, the child and both parents underwent genetic testing. Both parents resulted to be heterozygous healthy carriers of a single variation. CONCLUSION: Multimodal imaging, in particular OCT-A, is a useful aid, along to clinical findings and genetics, for the diagnosis of inherited retinal dystrophies.


Asunto(s)
Hipotricosis , Degeneración Macular , Distrofias Retinianas , Niño , Angiografía con Fluoresceína , Humanos , Masculino , Imagen Multimodal , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Epitelio Pigmentado de la Retina , Tomografía de Coherencia Óptica
5.
Cell Physiol Biochem ; 35(5): 2006-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25871776

RESUMEN

BACKGROUND/AIMS: Published observations on serum and glucocorticoid regulated kinase 1 (Sgk1) knockout murine models and Sgk1-specific RNA silencing in the RKO human colon carcinoma cell line point to this kinase as a central player in colon carcinogenesis and in resistance to taxanes. METHODS: By in vitro kinase activity inhibition assays, cell cycle and viability analysis in human cancer model systems, we describe the biologic effects of a recently identified kinase inhibitor, SI113, characterized by a substituted pyrazolo[3,4-d]pyrimidine scaffold, that shows specificity for Sgk1. RESULTS: SI113 was able to inhibit in vitro cell growth in cancer cells derived from tumors with different origins. In RKO cells, this kinase inhibitor blocked insulin-dependent phosphorylation of the Sgk1 substrate Mdm2, the main regulator of p53 protein stability, and induced necrosis and apoptosis when used as a single agent. Finally, SI113 potentiated the effects of paclitaxel on cell viability. CONCLUSION: Since SI113 appears to be effective in inducing cell death in RKO cells, potentiating paclitaxel sensitivity, we believe that this new molecule could be efficiently employed, alone or in combination with paclitaxel, in colon cancer chemotherapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Insulina/farmacología , Células MCF-7 , Necrosis , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Pirazoles/química , Pirazoles/uso terapéutico , Pirimidinas/química , Pirimidinas/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo
6.
Brain Behav Immun ; 42: 157-68, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24998197

RESUMEN

The mammalian target of rapamycin (mTOR) pathway has been recently indicated as a suitable drug target for the prevention of epileptogenesis. The mTOR pathway is known for its involvement in the control of the immune system. Since neuroinflammation is recognized as a major contributor to epileptogenesis, we wished to examine whether the neuroprotective effects of mTOR modulation could involve a suppression of the neuroinflammatory process in epileptic brain. We have investigated the early molecular mechanisms involved in the effects of intracerebral administration of the lipopolysaccharide (LPS) in the WAG/Rij rat model of absence epilepsy, in relation to seizure generation and depressive-like behavior; we also tested whether the effects of LPS could be modulated by treatment with rapamycin (RAP), a specific mTOR inhibitor. We determined, in specific rat brain areas, levels of p-mTOR/p-p70S6K and also p-AKT/p-AMPK as downstream or upstream indicators of mTOR activity and tested the effects of LPS and RAP co-administration. Changes in the brain levels of pro-inflammatory cytokines IL-1ß and TNF-α and their relative mRNA expression levels were measured, and the involvement of nuclear factor-κB (NF-κB) was also examined in vitro. We confirmed that RAP inhibits the aggravation of absence seizures and depressive-like/sickness behavior induced by LPS in the WAG/Rij rats through the activation of mTOR and show that this effect is correlated with the ability of RAP to dampen and delay LPS increases in neuroinflammatory cytokines IL-1ß and TNF-α, most likely through inhibition of the activation of NF-κB. Our results suggest that such a mechanism could contribute to the antiseizure, antiepileptogenic and behavioral effects of RAP and further highlight the potential therapeutic usefulness of mTOR inhibition in the management of human epilepsy and other neurological disorders. Furthermore, we show that LPS-dependent neuroinflammatory effects are also mediated by a complex interplay between AKT, AMPK and mTOR with specificity to selective brain areas. In conclusion, neuroinflammation appears to be a highly coordinated phenomenon, where timing of intervention may be carefully evaluated in order to identify the best suitable target.


Asunto(s)
Adenilato Quinasa/metabolismo , Citocinas/metabolismo , Trastorno Depresivo/inmunología , Epilepsia Tipo Ausencia/inmunología , Lipopolisacáridos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/metabolismo , Trastorno Depresivo/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia Tipo Ausencia/metabolismo , Masculino , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
7.
APMIS ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38239016

RESUMEN

The CD4+ T-cell population plays a vital role in the adaptive immune system by coordinating the immune response against different pathogens. A significant transformation occurs in CD4+ cells during an immune response, as they shift from a dormant state to an active state. This transformation leads to extensive proliferation, differentiation, and cytokine production, which contribute to regulating and coordinating the immune response. Th17 and Treg cells are among the most intriguing CD4+ T-cell subpopulations in terms of genetics and metabolism. Gene expression modulation processes rely on and are linked to metabolic changes in cells. Lactylation is a new model that combines metabolism and gene modulation to drive Th17/Treg differentiation and functional processes. The focus of this review is on the metabolic pathways that impact lymphocyte gene modulation in a functionally relevant manner.

9.
Cancers (Basel) ; 15(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36672435

RESUMEN

RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.

10.
Front Immunol ; 14: 1213805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441077

RESUMEN

The Th17+ arrangement is critical for orchestrating both innate and acquired immune responses. In this context, the serum and glucocorticoid regulated kinase 1 (SGK1) exerts a key role in the governance of IL-23R-dependent Th17+ maturation, through the phosphorylation-dependent control of FOXO1 localization. Our previous work has shown that some of the SGK1-key functions are dependent on RAN-binding protein 1 (RANBP1), a terminal gene in the nuclear transport regulation. Here, we show that RANBP1, similarly to SGK1, is modulated during Th17+ differentiation and that RANBP1 fluctuations mediate the SGK1-dependent effects on Th17+ maturation. RANBP1, as the final effector of the SGK1 pathway, affects FOXO1 transport from the nucleus to the cytoplasm, thus enabling RORγt activation. In this light, RANBP1 represents the missing piece, in an essential and rate-limiting manner, underlying the Th17+ immune asset.


Asunto(s)
Proteínas Nucleares , Proteína de Unión al GTP ran , Proteína de Unión al GTP ran/metabolismo , Proteínas Nucleares/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo
11.
Nat Med ; 11(7): 765-73, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15924147

RESUMEN

Type 2 diabetes mellitus is a widespread disease, affecting millions of people globally. Although genetics and environmental factors seem to have a role, the cause of this metabolic disorder is largely unknown. Here we report a genetic flaw that markedly reduced the intracellular expression of the high mobility group A1 (HMGA1) protein, and adversely affected insulin receptor expression in cells and tissues from four subjects with insulin resistance and type 2 diabetes. Restoration of HMGA1 protein expression in subjects' cells enhanced INSR gene transcription, and restored cell-surface insulin receptor protein expression and insulin-binding capacity. Loss of Hmga1 expression, induced in mice by disrupting the Hmga1 gene, considerably decreased insulin receptor expression in the major targets of insulin action, largely impaired insulin signaling and severely reduced insulin secretion, causing a phenotype characteristic of human type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteína HMGA1a/genética , Resistencia a la Insulina/genética , Regiones no Traducidas 3' , Adolescente , Adulto , Animales , Antígenos CD , Células Cultivadas , Niño , Femenino , Regulación de la Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4 , Proteína HMGA1a/metabolismo , Homeostasis/genética , Humanos , Insulina/metabolismo , Secreción de Insulina , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Mutantes , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Páncreas/metabolismo , Páncreas/patología , Linaje , Tomografía de Emisión de Positrones , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Estabilidad del ARN , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal
12.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35954327

RESUMEN

Li-Fraumeni syndrome (LFS) is a rare familial tumor predisposition syndrome with autosomal dominant inheritance, involving germline mutations of the TP53 tumor suppressor gene. The most frequent tumors that arise in patients under the age of 45 are osteosarcomas, soft-tissue sarcomas, breast tumors in young women, leukemias/lymphomas, brain tumors, and tumors of the adrenal cortex. To date, no other gene mutations have been associated with LFS. The diagnosis is usually confirmed by genetic testing for the identification of TP53 mutations; therefore, these mutations are considered the biomarkers associated with the tumor spectrum of LFS. Here, we aim to review novel molecular mechanisms involved in the oncogenic functions of mutant p53 in LFS and to discuss recent new diagnostic and therapeutic approaches exploiting TP53 mutations as biomarkers and druggable targets.

13.
Genes (Basel) ; 14(1)2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36672821

RESUMEN

Loss of function mutations in the PHEX gene could determine X-linked dominant hypophosphatemia. This is the most common form of genetic rickets. It is characterized by renal phosphate wasting determining an increase in fibroblast growth factor 23 (FGF-23), growth retard, bone deformities and musculoskeletal manifestations. In recent decades, analysis of the PHEX gene has revealed numerous different mutations. However, no clear genotype-phenotype correlations have been reported in patients with hypophosphatemic rickets (XLH). We report two cases of a 28-year-old-male (patient 1) and a 19-year-old male (patient 2) affected by XLH initially treated with phosphate and 1,25-dihydroxyvitamin-D admitted to the Endocrinology unit because of the persistence of muscle weakness, bone pain and fatigue. After phosphate withdrawal, both patients started therapy with burosumab and symptoms ameliorated in three months. However, patient 1's biochemical parameters did not improve as expected so we decided to investigate his genetic asset. We herein describe a possible clinical implication for the missense "de novo" mutation, c.250G>C (p.Ala84Pro) in the PHEX gene, reported in the PHEX database and classified as a variant of uncertain significance (VUS). The clinical implication of this mutation on disease burden and quality of life in adults is still under investigation.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Masculino , Humanos , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/diagnóstico , Calidad de Vida , Linaje , Fosfatos
14.
Genes (Basel) ; 13(7)2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35886069

RESUMEN

Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers.


Asunto(s)
Síndromes Neoplásicos Hereditarios , Neoplasias de la Mama Triple Negativas , Genes BRCA1 , Predisposición Genética a la Enfermedad , Células Germinativas , Humanos , Síndromes Neoplásicos Hereditarios/genética , Neoplasias de la Mama Triple Negativas/genética
15.
Biomolecules ; 12(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35883458

RESUMEN

Chronic venous disease is a condition globally widespread, resulting in a disabling pathological disorder. The CD4 + Th17+ (Cluster Differentiation 4) lymphocytes represent a regulative factor for innate immunity related to the development of complex diseases. Recently, these mechanisms have been associated with vascular disease. The aim of this work is to validate whether the Th17 response correlates with the development of CVI (Chronic venous insufficiency)and CVLUs (chronic venous limbs ulcers) and whether Th17 markers can be used, both as intrinsic risk factors and diagnostic markers, for disease development. PBL derived from peripheral blood samples of patients and controls were subjected to gene expression analysis for IL23R, IL17, SGK1, TGFß, RORγ, FOXO1, and RANBP1 by qRT-PCR and immunoblot. A post hoc correlation, the diagnostic performance of the target genes, and multivariable analyses were properly conducted. The main expression markers of the CD4 + Th17+ switch were strongly activated in chronic venous insufficiency and in advanced ulceration. The correlation analysis demonstrated the inter-dependence on Th17's signature modulation. ROC (Receiver Operating Characteristic) analysis defined, for the examined genes, a clinical value as the potential diagnostic markers. Multi-logistic regression studies showed that Th17 markers behave as empirical risk factors for CVD (chronic venous disease) development. Taken together, the present data provide a new hypothesis for the TH17-dependent pathogenesis of CVD, favoring the possibility for the development of new diagnostic, preventive, and therapeutic approaches.


Asunto(s)
Úlcera Varicosa , Insuficiencia Venosa , Biomarcadores , Enfermedad Crónica , Humanos , Células Th17 , Transcriptoma , Úlcera Varicosa/complicaciones , Úlcera Varicosa/genética , Insuficiencia Venosa/complicaciones , Insuficiencia Venosa/genética , Insuficiencia Venosa/terapia
16.
Genes (Basel) ; 12(9)2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34573377

RESUMEN

Achondrogenesis type II (ACG2) is a lethal skeletal dysplasia caused by dominant pathogenic variants in COL2A1. Most of the variants found in patients with ACG2 affect the glycine residue included in the Gly-X-Y tripeptide repeat that characterizes the type II collagen helix. In this study, we reported a case of a novel splicing variant of COL2A1 in a fetus with ACG2. An NGS analysis of fetal DNA revealed a heterozygous variant c.1267-2_1269del located in intron 20/exon 21. The variant occurred de novo since it was not detected in DNA from the blood samples of parents. We generated an appropriate minigene construct to study the effect of the variant detected. The minigene expression resulted in the synthesis of a COL2A1 messenger RNA lacking exon 21, which generated a predicted in-frame deleted protein. Usually, in-frame deletion variants of COL2A1 cause a phenotype such as Kniest dysplasia, which is milder than ACG2. Therefore, we propose that the size and position of an in-frame deletion in COL2A1 may be relevant in determining the phenotype of skeletal dysplasia.


Asunto(s)
Acondroplasia/genética , Colágeno Tipo II/genética , Enfermedades Fetales/genética , Aborto Eugénico , Acondroplasia/diagnóstico , Acondroplasia/patología , Acondroplasia/cirugía , Adulto , Empalme Alternativo/genética , Femenino , Enfermedades Fetales/diagnóstico , Enfermedades Fetales/patología , Enfermedades Fetales/cirugía , Humanos , Imagenología Tridimensional , Italia , Mutación , Embarazo , Isoformas de Proteínas/genética , Eliminación de Secuencia , Ultrasonografía Prenatal
17.
Front Genet ; 12: 734809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539758

RESUMEN

Li-Fraumeni syndrome (LFS) is an inherited autosomal dominant disease characterized by a predisposition to many cancers. Germline pathogenic variants in TP53 are primarily responsible for LFS. By performing a targeted sequencing panel in a proband with liver carcinoma having a deceased son affected by osteosarcoma, we found the novel heterozygous frameshift variant c.645del (p.Ser215Argfs*32) in the TP53 gene. This variant co-segregated with typical LFS cancers in the family pedigree, consistent with the pathogenicity of this novel and previously undescribed TP53 variant.

18.
Genes (Basel) ; 12(10)2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34680898

RESUMEN

Epidermolysis bullosa simplex is a disease that belongs to a group of genodermatoses characterised by the formation of superficial bullous lesions caused by minor mechanical trauma to the skin. The skin fragility observed in the EBS is mainly caused by pathogenic variants in the KRT5 and KRT14 genes that compromise the mechanical stability of epithelial cells. By performing DNA sequencing in a female patient with EBS, we found the pathogenic variant c.967G>A (p.Val323Met) in the KRT5 gene. This variant co-segregated with EBS in the family pedigree and was transmitted in an autosomal dominant inheritance manner. This is the first report showing a familial form of EBS due to this pathogenic variant.


Asunto(s)
Epidermólisis Ampollosa Simple/genética , Queratina-5/genética , Adulto , ADN/genética , Femenino , Humanos , Masculino , Linaje
19.
Cell Physiol Biochem ; 26(4-5): 587-96, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21063096

RESUMEN

The serum- and glucocorticoid-regulated kinase (Sgk1) is essential for hormonal regulation of ENaC-mediated sodium transport and is involved in the transduction of growth-factor-dependent cell survival and proliferation. The identification of molecular partners for Sgk1 is crucial for the understanding of its mechanisms of action. We performed a yeast two-hybrid screening based on a human kidney cDNA library to identify molecular partners of Sgk1. As a result the screening revealed a specific interaction between Sgk1 and a 60 kDa Lysophospholipase (LysoLP). LysoLP is a poorly characterized enzyme that, based on sequence analysis, might possess lysophospholipase and asparaginase activities. We demonstrate that LysoLP has indeed a lysophospholipase activity and affects metabolic functions related to cell proliferation and regulation of membrane channels. Moreover we demonstrate in the Xenopus oocyte expression system that LysoLP downregulates basal and Sgk1-dependent ENaC activity. In conclusion LysoLP may represent a new player in the regulation of ENaC and Sgk1-dependent signaling.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Lisofosfolipasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Biblioteca de Genes , Humanos , Lisofosfolipasa/química , Lisofosfolipasa/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oocitos/metabolismo , Fosforilación , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , Xenopus/crecimiento & desarrollo
20.
PLoS Genet ; 3(7): e110, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17616978

RESUMEN

To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.


Asunto(s)
Daño del ADN , Metilación de ADN , Reparación del ADN , Animales , Secuencia de Bases , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Islas de CpG , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Roturas del ADN de Doble Cadena , Cartilla de ADN/genética , Expresión Génica , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Pérdida de Heterocigocidad , Ratones , Modelos Genéticos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Recombinación Genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda