RESUMEN
Planctomycetes of the family Pirellulaceae are commonly addressed as budding aquatic bacteria with a complex lifestyle. Although this family is well represented by cultured and taxonomically characterized isolates, nearly all of them were obtained from brackish or marine habitats. The examples of described freshwater Pirellulaceae planctomycetes are limited to two species only, Pirellula staley and 'Anatilimnocola aggregata'. In this study, we characterized a novel freshwater planctomycete of the genus 'Anatilimnocola', strain PX40T, which was isolated from a boreal eutrophic lake. Strain PX40T was represented by budding, unpigmented, ellipsoidal to pear-shaped cells, which often occurred in characteristic flower-like rosettes. Cells were covered by bundles of fimbriae; crateriform-like structures were localized on a reproductive cell pole only. These planctomycetes were obligately aerobic, heterotrophic bacteria that utilized various sugars and some polysaccharides, and were highly sensitive to NaCl. Growth occurred in the pH range 5.0-7.5 (with an optimum at pH 6.5-7.0), and at temperatures between 15 and 30 °C (with an optimum at 22-25 °C). The major fatty acids of strain PX40T were C18:1ω9c, C16:0, and 16:1ω7c; cells also contained a wide variety of hydroxy- and dihydroxy-fatty acids and a C31:9 alkene. The major intact polar lipids were diacylglyceryl-(N,N,N)-trimethylhomoserines. The 16S rRNA gene sequence of strain PX40T displayed 96.6% similarity to that of 'Anatilimnocola aggregata' ETA_A8T. The genome of strain PX40T was 8.93 Mb in size and contained one copy of rRNA operon, 76 tRNA genes and 7092 potential protein-coding genes. The DNA G+C content was 57.8%. The ANI value between strain PX40T and 'Anatilimnocola aggregata' ETA_A8T was 78.3%, suggesting that these planctomycetes represent distinct species. We, therefore, propose a novel species of the genus 'Anatilimnocola', 'A. floriformis' sp. nov., with strain PX40T (= KCTC 92369T = VKM B-3621T = UQM 41463T) as the type strain.
Asunto(s)
Lagos , Planctomycetales , Alquenos , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Lagos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio , AzúcaresRESUMEN
Phycisphaera-like WD2101 'soil group' is one of the as-yet-uncultivated phylogenetic clades within the phylum Planctomycetes. Members of this clade are commonly detected in various terrestrial habitats. This study shows that WD2101 represented one of the major planctomycete groups in 10 boreal peatlands, comprising up to 76% and 36% of all Planctomycetes-affiliated 16S rRNA gene reads in raised bogs and eutrophic fens respectively. These types of peatlands displayed clearly distinct intra-group diversity of WD2101-affiliated planctomycetes. The first isolate of this enigmatic planctomycete group, strain M1803, was obtained from a humic lake surrounded by Sphagnum peat bogs. Strain M1803 displayed 89.2% 16S rRNA gene similarity to Tepidisphaera mucosa and was represented by motile cocci that divided by binary fission and grew under micro-oxic conditions. The complete 7.19 Mb genome of strain M1803 contained an array of genes encoding Planctomycetal type bacterial microcompartment organelle likely involved in l-rhamnose metabolism, suggesting participation of M1803-like planctomycetes in polysaccharide degradation in peatlands. The corresponding cellular microcompartments were revealed in ultrathin cell sections. Strain M1803 was classified as a novel genus and species, Humisphaera borealis gen. nov., sp. nov., affiliated with the formerly recognized WD2101 'soil group'.
Asunto(s)
Bacterias , Suelo , Bacterias/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano , Ácidos Grasos , Filogenia , Planctomicetos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del SueloRESUMEN
The first representative of the phylum Planctomycetes, Planctomyces bekefii, was described nearly one century ago. This morphologically conspicuous freshwater bacterium is a rare example of as-yet-uncultivated prokaryotes with validly published names and unknown identity. We report the results of molecular identification of this elusive bacterium, which was detected in a eutrophic boreal lake in Northern Russia. By using high-performance cell sorting, P. bekefii-like cell rosettes were selectively enriched from lake water. The retrieved 16S rRNA gene sequence was nearly identical to those in dozens of metagenomes assembled from freshwater lakes during cyanobacterial blooms and was phylogenetically placed within a large group of environmental sequences originating from various freshwater habitats worldwide. In contrast, 16S rRNA gene sequence similarity to all currently described members of the order Planctomycetales was only 83%-92%. The metagenome assembled for P. bekefii reached 43% genome coverage and showed the potential for degradation of peptides, pectins, and sulfated polysaccharides. Tracing the seasonal dynamics of P. bekefii by Illumina paired-end sequencing of 16S rRNA gene fragments and by fluorescence in situ hybridization revealed that these bacteria only transiently surpass the detection limit, with a characteristic population peak of up to 104 cells ml-1 following cyanobacterial blooms.
Asunto(s)
Planctomycetales/clasificación , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Lagos/microbiología , Redes y Vías Metabólicas/genética , Metagenoma , Filogenia , Filogeografía , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , Planctomycetales/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
The family Gemmataceae accommodates aerobic, chemoorganotrophic planctomycetes, which inhabit various freshwater ecosystems, wetlands and soils. Here, we describe a novel member of this family, strain PX52T, which was isolated from a boreal eutrophic lake in Northern Russia. This isolate formed pink-pigmented colonies and was represented by spherical cells that occurred singly, in pairs or aggregates and multiplied by budding. Daughter cells were highly motile. PX52T was an obligate aerobic chemoorganotroph, which utilized various sugars and some heteropolysaccharides. Growth occurred at pH 5.0-7.5 (optimum pH 6.5) and at temperatures between 10 and 30 °C (optimum 20-25 °C). The major fatty acids were C18â:â1É·7c, C18â:â0 and ßOH-C16:0; the major intact polar lipid was trimethylornithine, and the quinone was MK-6. The complete genome of PX52T was 9.38 Mb in size and contained nearly 8000 potential protein-coding genes. Among those were genes encoding a wide repertoire of carbohydrate-active enzymes (CAZymes) including 33 glycoside hydrolases (GH) and 87 glycosyltransferases (GT) affiliated with 17 and 12 CAZy families, respectively. DNA G+C content was 65.6 mol%. PX52T displayed only 86.0-89.8â% 16S rRNA gene sequence similarity to taxonomically described Gemmataceae planctomycetes and differed from them by a number of phenotypic characteristics and by fatty acid composition. We, therefore, propose to classify it as representing a novel genus and species, Limnoglobus roseus gen. nov., sp. nov. The type strain is strain PX52T (=KCTC 72397T=VKM B-3275T).
Asunto(s)
Genoma Bacteriano , Lagos/microbiología , Filogenia , Planctomycetales/clasificación , Bacterias/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Tamaño del Genoma , Ornitina/análogos & derivados , Ornitina/química , Pigmentación , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
Members of the bacterial order Planctomycetales have often been observed in associations with Crustacea. The ability to degrade chitin, however, has never been reported for any of the cultured planctomycetes although utilization of N-acetylglucosamine (GlcNAc) as a sole carbon and nitrogen source is well recognized for these bacteria. Here, we demonstrate the chitinolytic capability of a member of the family Gemmataceae, Fimbriiglobus ruber SP5T, which was isolated from a peat bog. As revealed by metatranscriptomic analysis of chitin-amended peat, the pool of 16S rRNA reads from F. ruber increased in response to chitin availability. Strain SP5T displayed only weak growth on amorphous chitin as a sole source of carbon but grew well with chitin as a source of nitrogen. The genome of F. ruber SP5T is 12.364 Mb in size and is the largest among all currently determined planctomycete genomes. It encodes several enzymes putatively involved in chitin degradation, including two chitinases affiliated with the glycoside hydrolase (GH) family GH18, GH20 family ß-N-acetylglucosaminidase, and the complete set of enzymes required for utilization of GlcNAc. The gene encoding one of the predicted chitinases was expressed in Escherichia coli, and the endochitinase activity of the recombinant enzyme was confirmed. The genome also contains genes required for the assembly of type IV pili, which may be used to adhere to chitin and possibly other biopolymers. The ability to use chitin as a source of nitrogen is of special importance for planctomycetes that inhabit N-depleted ombrotrophic wetlands.IMPORTANCE Planctomycetes represent an important part of the microbial community in Sphagnum-dominated peatlands, but their potential functions in these ecosystems remain poorly understood. This study reports the presence of chitinolytic potential in one of the recently described peat-inhabiting members of the family Gemmataceae, Fimbriiglobus ruber SP5T This planctomycete uses chitin, a major constituent of fungal cell walls and exoskeletons of peat-inhabiting arthropods, as a source of nitrogen in N-depleted ombrotrophic Sphagnum-dominated peatlands. This study reports the chitin-degrading capability of representatives of the order Planctomycetales.
Asunto(s)
Quitina/metabolismo , Genoma Bacteriano , Planctomycetales/genética , Quitinasas/análisis , Planctomycetales/metabolismo , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Federación de Rusia , Suelo , HumedalesRESUMEN
Members of the phylum Planctomycetes are common inhabitants of northern Sphagnum-dominated wetlands. Evidence is accumulating that, in these environments, some planctomycetes may be involved in degrading polymeric organic matter. The experimental data, however, remain scarce due to the low number of characterized representatives of this phylum. In a previous study, we used metatranscriptomics to assess the activity response of peat-inhabiting microorganisms to biopolymers abundantly present in native peat. The community responses to cellulose, xylan, pectin, and chitin availability were analysed relative to unamended controls. Here, we re-analysed these metatranscriptomes and retrieved a total of 1,602,783 rRNA and 35,522 mRNA sequences affiliated with the Planctomycetes. Each of the four polymers induced specific planctomycete responses. These were most pronounced on chitin. The two groups with increased 16S rRNA transcript pools were Gemmata- and Phycisphaera-like planctomycetes. Among uncultivated members of the Planctomycetaceae, two increased transcript pools were detected in pectin-amended samples and belonged to Pirellula-like bacteria. The analysis of taxonomically assigned mRNA reads confirmed the specific response of Gemmata-related planctomycetes to chitin amendment suggesting the presence of chitinolytic capabilities in these bacteria.
Asunto(s)
Planctomycetales/genética , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo , HumedalesRESUMEN
Members of the phylum Planctomycetes were originally described as freshwater bacteria. Most recent studies, however, address planctomycete diversity in other environments colonized by these microorganisms, including marine and terrestrial ecosystems. This study was initiated in order to revisit the specific patterns of planctomycete diversity in freshwater habitats using cultivation-independent approaches. The specific focus was made on planctomycetes associated with Nuphar lutea (L.) Smith, an emergent macrophyte with floating leaves, which is widespread in the Holarctic. As revealed by Illumina pair-end sequencing of 16S rRNA gene fragments, the bacterial assemblages colonizing floating leaf blades of waterlilies sampled from two different boreal lakes displayed similar composition but were distinct from the planktonic bacterial communities. 16S rRNA gene fragments from the Planctomycetes comprised 0.1-1 and 1-2.2% of total 16S rRNA gene reads retrieved from water samples and plant leaves, respectively. Planktonic planctomycetes were mostly affiliated with the class Planctomycetaceae (77-97%), while members of the Phycisphaerae were less abundant (3-22%). The relative proportion of the latter group, however, increased by 13-45% on leaves of N. lutea. The Phycisphaera-related group WD2101, Pirellula-like planctomycetes, as well as Gemmata, Zavarzinella and Planctopirus species were the most abundant groups of planctomycetes associated with plant leaves, which may suggest their involvement in the degradation of plant-derived organic matter.
Asunto(s)
Planctomycetales/genética , Bacterias Aerobias/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo , Microbiología del AguaRESUMEN
Two strains of aerobic, budding, pink-pigmented bacteria, P12T and P515, were isolated from a lichen-dominated peatland and a forested tundra soil of north-western Siberia, respectively. Cells of these isolates were represented by non-motile spheres that occurred singly or were arranged in short chains and aggregates. While growing on solid media, cells of strains P12T and P515 attached to the surface by means of holdfast-like appendages. These isolates were mildly acidophilic (optimum growth at pH 5.5-6.0), psychrotolerant bacteria, which displayed tolerance of low temperatures (4-15 °C), grew optimally at 15-22 °C and did not grow at temperatures above 28 °C. The preferred growth substrates were sugars and some heteropolysaccharides. The major fatty acids were C18â:â1ω9c, C16â:â0 and C14â:â0. Trimethylornithine lipid was the major polar lipid. The only quinone was MK-6, and the G+C content of the DNA was 61.2-62.2 mol%. Strains P12T and P515 possessed identical 16S rRNA gene sequences, which affiliated them with the family Isosphaeraceae, order Planctomycetales, and these displayed the highest similarity (93-94â%) to 16S rRNA gene sequences from members of the genus Singulisphaera. However, the signature fatty acid of species of the genus Singulisphaera, i.e. C18â:â2ω6c,12c, was absent in cells of strains P12T and P515. They also differed from members of the genus Singulisphaera by substrate utilization pattern and a number of physiological characteristics. Based on these data, the novel isolates should be considered as representing a novel genus and species of planctomycetes, for which the name Tundrisphaera lichenicola gen. nov., sp. nov, is proposed. The type strain is P12T (=LMG 29571T=VKM B-3044T).
Asunto(s)
Líquenes , Filogenia , Planctomycetales/clasificación , Microbiología del Suelo , Tundra , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Siberia , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
An aerobic, budding, dark pink to red-pigmented bacterium was isolated from an acidic boreal Sphagnum peat bog and designated strain SP5T. Cells of this strain were non-motile spheres that were uniformly covered with crateriform pits and fimbria, and tended to form aggregates during growth in liquid media. Strain SP5T was capable of growth between pH 4.0 and pH 6.8 (optimum at pH 5.5-6.0) and at temperatures between 10 and 30 °C (optimum at 20-25 °C). The preferred growth substrates were sugars and some heteropolysaccharides. The major fatty acids were C20â:â1ω9c, C16â:â1ω9c and C16â:â0, and the major polar lipid was trimethylornithine. Cells contained also significant amounts of bound (ω-1)OH-C30â:â1 fatty acid. The quinone was menaquinone-6, and the G+C content of the DNA was 60.7 mol%. Strain SP5T was a member of the order Planctomycetales and belonged to the phylogenetic lineage defined by the genus Gemmata. It displayed 88 and 89â% 16S rRNA gene sequence similarity to Gemmata obscuriglobusUQM 2246T and 'Gemmata massiliana' IIL30, 89â% to Zavarzinella formosa A10T and 86â% to Telmatocola sphagniphila SP2T. However, strain SP5T differed from members of these genera by cell morphology, substrate utilization pattern and fatty acid composition. Based on these data, the novel isolate should be considered as representing a novel species of a new genus of planctomycetes, for which the name Fimbriiglobus ruber gen. nov., sp. nov, is proposed. The type strain is SP5T (=LMG 29572T=VKM B-3045T). We also suggest the establishment of a novel family, Gemmataceaefam. nov., which includes the phylogenetically related genera Gemmata, Zavarzinella, Telmatocola and Fimbriiglobus.
Asunto(s)
Filogenia , Microbiología del Suelo , Sphagnopsida/microbiología , Humedales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Ornitina/química , Pigmentación , Planctomycetales/clasificación , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated bacteria.
Asunto(s)
Pectinas/metabolismo , Microbiología del Suelo , Sphagnopsida , Xilanos/metabolismo , Acidobacteria/clasificación , Acidobacteria/metabolismo , Actinobacteria/clasificación , Actinobacteria/metabolismo , Alveolados/clasificación , Alveolados/metabolismo , Quitina/metabolismo , FilogeniaRESUMEN
Two isolates of aerobic, budding, pink-pigmented bacteria, designated strains PX4T and PT1, were isolated from a boreal Sphagnum peat bog and a forested tundra wetland. Cells of these strains were non-motile spheres that occurred singly or in short chains. Novel isolates were capable of growth at pH values between 3.5 and 6.5 (optimum at pH 5.0-5.5) and at temperatures between 6 and 30 °C (optimum at 15-25 °C). Most sugars and a number of polysaccharides including pectin, xylan, lichenin and Phytagel were used as growth substrates. The major fatty acids were C16 : 0, C18 : 1ω9 and C18 : 0; the major polar lipids were phosphocholine and trimethylornithine. The quinone was menaquinone-6, and the G+C content of the DNA was 66âmol%. Strains PX4T and PT1 were members of the order Planctomycetales and displayed 93-94 % 16S rRNA gene sequence similarity to Aquisphaera giovannonii, 91-92 % to species of the genus Singulisphaera and 90-91 % to Isosphaera pallida. The two novel strains, however, differed from members of these genera by cell morphology, substrate utilization pattern and a number of physiological characteristics. Based on these data, the novel isolates should be considered as representing a novel genus and species of planctomycetes, for which the name Paludisphaera borealis gen. nov., sp. nov., is proposed. The type strain is PX4T ( = DSM 28747T = VKM B-2904T). We also suggest the establishment of a novel family, Isosphaeraceae fam. nov., to accommodate stalk-free planctomycetes with spherical cells, which can be assembled in short chains, long filaments or shapeless aggregates. This family includes the genera Isosphaera, Aquisphaera, Singulisphaera and Paludisphaera.
RESUMEN
An aerobic, budding, non-pigmented and rosette-forming bacterium was isolated from a littoral wetland of a boreal lake located in Valaam Island, northern Russia, and designated strain P3(T). Ellipsoidal to pear-shaped cells of this bacterium were covered with crateriform pits and possessed stalks suggesting a planctomycete morphotype. 16S rRNA gene sequence analysis confirmed that strain P3(T) was a member of the order Planctomycetales and belonged to a phylogenetic lineage defined by the genus Planctomyces , with 89 and 86% sequence similarity to Planctomyces brasiliensis and Planctomyces maris , respectively. Strain P3(T) was a mildly acidophilic, mesophilic organism capable of growth at pH values between pH 4.2 and 7.1 (with an optimum at pH 6.0-6.5) and at temperatures between 10 and 30 °C (optimum at 20-28 °C). Most sugars, a number of polysaccharides and several organic acids were the preferred growth substrates. Compared with Planctomyces brasiliensis and Planctomyces maris , which require NaCl for growth, strain P3(T) was salt-sensitive and did not develop at NaCl concentrations above 0.5% (w/v). The major fatty acids were C16 : 0 and C16 : 1ω7c; the cells also contained significant amounts of C18 : 1ω7c and C18 : 0. The major intact polar lipids were diacylglycerol-O-(N,N,N-trimethyl)homoserine (DGTS) lipids; the major neutral lipids were long-chain 1,(ω-1)-diols and C31 : 9 hydrocarbon. The quinone was MK-6, and the G+C content of the DNA was 59.0 mol%. Strain P3(T) differed from Planctomyces brasiliensis and Planctomyces maris by cell morphology, substrate utilization pattern and a number of physiological characteristics. Based on these data, the novel isolate should be considered as representing a novel genus and species of planctomycetes, for which the name Planctomicrobium piriforme gen. nov., sp. nov., is proposed. The type strain is P3(T) (â=DSM 26348(T)â=VKM B-2887(T)).
Asunto(s)
Filogenia , Planctomycetales/clasificación , Microbiología del Suelo , Humedales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Lagos , Datos de Secuencia Molecular , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
Planctomycetes of the genus Singulisphaera are common inhabitants of soils and peatlands. Although described members of this genus are characterized as possessing hydrolytic capabilities, the ability to degrade chitin has not yet been reported for these bacteria. In this study, a novel Singulisphaera representative, strain Ch08, was isolated from a chitinolytic enrichment culture obtained from a boreal fen in Northern European Russia. The 16S rRNA gene sequence of this isolate displayed 98.2% similarity to that of Singulisphaera acidiphila MOB10T. Substrate utilization tests confirmed that strain Ch08 is capable of growth on amorphous chitin. The complete genome of strain Ch08 determined in this study was 10.85 Mb in size and encoded two predicted chitinases, which were only distantly related to each other and affiliated with the glycoside hydrolase family GH18. One of these chitinases had a close homologue in the genome of S. acidiphila MOB10T. The experimental verification of S. acidiphila MOB10T growth on amorphous chitin was also positive. Transcriptome analysis performed with glucose- and chitin-growth cells of strain Ch08 showed upregulation of the predicted chitinase shared by strain Ch08 and S. acidiphila MOB10T. The gene encoding this protein was expressed in Escherichia coli, and the endochitinase activity of the recombinant enzyme was confirmed. The ability to utilize chitin, a major constituent of fungal cell walls and arthropod exoskeletons, appears to be one of the previously unrecognized ecological functions of Singulisphaera-like planctomycetes.
RESUMEN
Strains of the genus Delftia are poorly studied microorganisms. In this work, the complete genome of the naphthalene-degrading Delftia tsuruhatensis strain ULwDis3 isolated from seawater of the Gulf of Finland of the Baltic Sea was assembled. For the first time, genes encoding naphthalene cleavage pathways via salicylate and gentisate were identified in a strain of the genus Delftia. The genes are part of one operon (nag genes). Three open reading frames (ORFs) were found in the genome of D. tsuruhatensis strain ULwDis3 that encode gentisate 1.2-dioxygenase. One of the ORFs is part of the nag operon. The physiological and biochemical characteristics of the strain ULwDis3 when cultured in mineral medium with naphthalene as the sole source of carbon and energy were also studied. It was found that after 22 h of growth, the strain stopped consuming naphthalene, and at the same time, naphthalene 1.2-dioxygenase and salicylate 5-hydroxylase activities were not detected. Later, a decrease in the number of living cells and the death of the culture were observed. Gentisate 1.2-dioxygenase activity was detected from the time of gentisate formation until culture death.
RESUMEN
The complete genome of the naphthalene- and n-alkane-degrading strain Pseudomonas sp. strain OVF7 was collected and analyzed. Clusters of genes encoding enzymes for the degradation of naphthalene and n-alkanes are localized on the chromosome. Based on the Average Nucleotide Identity and digital DNA-DNA Hybridization compared with type strains of the group of fluorescent pseudomonads, the bacterium studied probably belongs to a new species. Using light, fluorescent, and scanning electron microscopy, the ability of the studied bacterium to form biofilms of different architectures when cultured in liquid mineral medium with different carbon sources, including naphthalene and n-dodecane, was demonstrated. When grown on a mixture of naphthalene and n-dodecane, the strain first consumed naphthalene and then n-dodecane. Cultivation of the strain on n-dodecane was characterized by a long adaptation phase, in contrast to cultivation on naphthalene and a mixture of naphthalene and n-dodecane.
RESUMEN
The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 °C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (~100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USCα). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones.
RESUMEN
Carotenoids are secondary metabolites that exhibit antioxidant properties and are characterized by a striking range of colorations from red to yellow. These natural pigments are synthesized by a wide range of eukaryotic and prokaryotic organisms. Among the latter, carotenoid-producing methanotrophic bacteria, which display fast growth on methane or natural gas, are of particular interest as potential producers of a feed protein enriched with carotenoids. Until recently, Methylomonas strain 16a and Methylomonas sp. ZR1 remained the only representatives of the genus for which detailed carotenoid profile was determined. In this study, we analyzed the genome sequences of five strains of Methylomonas species whose pigmentation varied from white and yellow to orange and red, and identified carotenoids produced by these bacteria. Carotenoids synthesized using four pigmented strains included C30 fraction, primarily composed of 4,4'-diaplycopene-4,4'-dioic acid and 4,4'-diaplycopenoic acid, as well as C40 fraction with the major compound represented by 1,1'-dihydroxy-3,4-didehydrolycopene. The genomes of studied Methylomonas strains varied in size between 4.59 and 5.45 Mb and contained 4201-4735 protein-coding genes. These genomes and 35 reference Methylomonas genomes available in the GenBank were examined for the presence of genes encoding carotenoid biosynthesis. Genomes of all pigmented Methylomonas strains harbored genes necessary for the synthesis of 4,4'-diaplycopene-4,4'-dioic acid. Non-pigmented "Methylomonas montana" MW1T lacked the crtN gene required for carotenoid production. Nearly all strains possessed phytoene desaturases, which explained their ability to naturally synthesize lycopene. Thus, members of the genus Methylomonas can potentially be considered as producers of C30 and C40 carotenoids from methane.
RESUMEN
The impact of geographical factors, functional zoning, and biotope type on the diversity of microbial communities and chemical components in the dust of urban ecosystems was studied. Comprehensive analyses of bacterial and fungal communities, polycyclic aromatic hydrocarbons (PAHs), and metals in road and leaf dust in three urban zones of Murmansk and Moscow with contrasting anthropogenic load were conducted. We found that the structure of bacterial communities affected the functional zoning of the city, biotope type, and geographical components. Fungal communities were instead impacted only by biotope type. Our findings revealed that the structure of fungal communities was mostly impacted by PAHs whereas bacterial communities were sensitive to metals. Bacteria of the genus Sphingomonas in road and leaf dust as indicators of the ecological state of the urban ecosystems were proposed.
RESUMEN
Drug-eluting films made of bioresorbable polymers are a widely used tool of modern personalized medicine. However, most currently existing methods of producing coatings do not go beyond the laboratory, as they have low encapsulation efficiency and/or difficulties in scaling up. The PLACE (Printed Layered Adjustable Cargo Encapsulation) technology proposed in this article uses an additive approach for film manufacturing. PLACE technology is accessible, scalable, and reproducible in any laboratory. As a demonstration of the technology capabilities, we fabricated layered drug-eluting polyglycolic acid films containing different concentrations of Cefazolin antibiotic. The influence of the amount of loaded drug component on the film production process and the release kinetics was studied. The specific loading of drugs was significantly increased to 200-400 µg/cm2 while maintaining the uniform release of Cefazolin antibiotic in a dosage sufficient for local antimicrobial therapy for 14 days. The fact that the further increase in the drug amount results in the crystallization of a substance, which can lead to specific defects in the cover film formation and accelerated one-week cargo release, was also shown, and options for further technology development were proposed.
RESUMEN
Narrow dispersed poly(1-vinyl-1,2,4-triazole) (PVT) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of 1-vinyl-1,2,4-triazole (VT). AIBN as the initiator and dithiocarbamates, xanthates, and trithiocarbonates as the chain transfer agents (CTA) were used. Dithiocarbamates proved to be the most efficient in VT polymerization. Gel permeation chromatography was used to determine the molecular weight distribution and polydispersity of the synthesized polymers. The presence of the CTA stabilizing and leaving groups in the PVT was confirmed by 1H and 13C NMR spectroscopy. The linear dependence of the degree of polymerization on time confirms the conduct of radical polymerization in a controlled mode. The VT conversion was over 98% and the PVT number average molecular weight ranged from 11 to 61 kDa. The polydispersity of the synthesized polymers reached 1.16. The occurrence of the controlled radical polymerization was confirmed by monitoring the degree of polymerization over time.