Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Anal Biochem ; 693: 115582, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38825160

RESUMEN

Progress has been made studying cell-cell signaling communication processes. However, due to limitations of current sensors on time and spatial resolution, the role of many extracellular analytes is still unknown. A single walled carbon nanotube (SWNT) platform was previously developed based on the avidin-biotin immobilization of SWNT to a glass substrate. The SWNT platform provides real time feedback about analyte concentration and has a high concentration of evenly distributed sensors, both of which are essential for the study of extracellular analytes. Unfortunately, this initial SWNT platform is synthesized through unsterile conditions and cannot be sterilized post-production due to the delicate nature of the sensors, making it unsuitable for in vitro work. Herein the multiple-step process for SWNT immobilization is modified and the platform's biocompatibility is assessed in terms of sterility, cytotoxicity, cell proliferation, and cell morphology through comparison with non-sensors controls. The results demonstrate the SWNT platform's sterility and lack of toxicity over 72 h. The proliferation rate and morphology profiles for cells growing on the SWNT platform are similar to those grown on tissue culture substrates. This novel nano-sensor platform preserves cell health and cell functionality over time, offering opportunities to study extracellular analytes gradients in cellular communication.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Humanos , Proliferación Celular , Biotina/química , Técnicas Biosensibles/métodos , Avidina/química
2.
Nanomedicine ; 40: 102489, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34740870

RESUMEN

High resolution, rapid, and precise detection of biological analytes related to disease and infection is currently the focus of many researchers. Better biosensors could lead to earlier detection, more avenues of intervention, and higher efficacy of therapeutics, which would lead to better outcomes for all patients. One class of biosensors, single walled carbon nanotubes, is unique due to their nanoscale resolution, single molecule sensitivity, and reversibility for long term applications. While these biosensors have been successful in rodent models, to date, no study has shown successful sensor detection in a large animal. In this study, we show the first successful signal detection of single walled carbon nanotube-based sensors in a large mammal model. Using a relatively simple and cost-effective system, we were able to detect signals in nearly 70% of the sheep used in the study, marking an important steppingstone towards the use of SWNT-based sensors for clinical diagnostics.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Animales , Humanos , Mamíferos , Ovinos
3.
Nano Lett ; 17(3): 2015-2020, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28152589

RESUMEN

Implantable sensors that detect biomarkers in vivo are critical for early disease diagnostics. Although many colloidal nanomaterials have been developed into optical sensors to detect biomolecules in vitro, their application in vivo as implantable sensors is hindered by potential migration or clearance from the implantation site. One potential solution is incorporating colloidal nanosensors in hydrogel scaffold prior to implantation. However, direct contact between the nanosensors and hydrogel matrix has the potential to disrupt sensor performance. Here, we develop a hollow-microcapsule-based sensing platform that protects colloidal nanosensors from direct contact with hydrogel matrix. Using microfluidics, colloidal nanosensors were encapsulated in polyethylene glycol microcapsules with liquid cores. The microcapsules selectively trap the nanosensors within the core while allowing free diffusion of smaller molecules such as glucose and heparin. Glucose-responsive quantum dots or gold nanorods or heparin-responsive gold nanorods were each encapsulated. Microcapsules loaded with these sensors showed responsive optical signals in the presence of target biomolecules (glucose or heparin). Furthermore, these microcapsules can be immobilized into biocompatible hydrogel as implantable devices for biomolecular sensing. This technique offers new opportunities to extend the utility of colloidal nanosensors from solution-based detection to implantable device-based detection.


Asunto(s)
Coloides/química , Microfluídica/métodos , Nanoestructuras/química , Polietilenglicoles/química , Anticoagulantes/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Cápsulas/química , Difusión , Diseño de Equipo , Glucosa/análisis , Heparina/análisis , Microfluídica/instrumentación , Puntos Cuánticos/química
4.
Small ; 11(32): 3973-84, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25981520

RESUMEN

Advances in the separation and functionalization of single walled carbon nanotubes (SWCNT) by their electronic type have enabled the development of ratiometric fluorescent SWCNT sensors for the first time. Herein, single chirality SWCNT are independently functionalized to recognize either nitric oxide (NO), hydrogen peroxide (H(2)O(2)), or no analyte (remaining invariant) to create optical sensor responses from the ratio of distinct emission peaks. This ratiometric approach provides a measure of analyte concentration, invariant to the absolute intensity emitted from the sensors and hence, more stable to external noise and detection geometry. Two distinct ratiometric sensors are demonstrated: one version for H(2)O(2), the other for NO, each using 7,6 emission, and each containing an invariant 6,5 emission wavelength. To functionalize these sensors from SWCNT isolated from the gel separation technique, a method for rapid and efficient coating exchange of single chirality sodium dodecyl sulfate-SWCNT is introduced. As a proof of concept, spatial and temporal patterns of the ratio sensor response to H(2)O(2) and, separately, NO, are monitored in leaves of living plants in real time. This ratiometric optical sensing platform can enable the detection of trace analytes in complex environments such as strongly scattering media and biological tissues.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Rayos Infrarrojos , Nanotubos de Carbono/química , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Fluorescencia , Radicales Libres/metabolismo , Peróxido de Hidrógeno/farmacología , Óxido Nítrico/farmacología , Hojas de la Planta/efectos de los fármacos , Sonicación , Suspensiones , Factores de Tiempo
5.
Nat Mater ; 13(4): 400-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24633343

RESUMEN

The interface between plant organelles and non-biological nanostructures has the potential to impart organelles with new and enhanced functions. Here, we show that single-walled carbon nanotubes (SWNTs) passively transport and irreversibly localize within the lipid envelope of extracted plant chloroplasts, promote over three times higher photosynthetic activity than that of controls, and enhance maximum electron transport rates. The SWNT-chloroplast assemblies also enable higher rates of leaf electron transport in vivo through a mechanism consistent with augmented photoabsorption. Concentrations of reactive oxygen species inside extracted chloroplasts are significantly suppressed by delivering poly(acrylic acid)-nanoceria or SWNT-nanoceria complexes. Moreover, we show that SWNTs enable near-infrared fluorescence monitoring of nitric oxide both ex vivo and in vivo, thus demonstrating that a plant can be augmented to function as a photonic chemical sensor. Nanobionics engineering of plant function may contribute to the development of biomimetic materials for light-harvesting and biochemical detection with regenerative properties and enhanced efficiency.


Asunto(s)
Arabidopsis/química , Arabidopsis/fisiología , Cloroplastos/química , Cloroplastos/fisiología , Nanotubos de Carbono/química , Fotosíntesis/fisiología , Arabidopsis/efectos de la radiación , Biónica/métodos , Cloroplastos/efectos de la radiación , Luz , Nanotecnología/métodos , Nanotubos de Carbono/efectos de la radiación , Nanotubos de Carbono/ultraestructura , Fotosíntesis/efectos de la radiación
6.
Nano Lett ; 14(8): 4887-94, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25029087

RESUMEN

Fluorescent nanosensor probes have suffered from limited molecular recognition and a dearth of strategies for spatial-temporal operation in cell culture. In this work, we spatially imaged the dynamics of nitric oxide (NO) signaling, important in numerous pathologies and physiological functions, using intracellular near-infrared fluorescent single-walled carbon nanotubes. The observed spatial-temporal NO signaling gradients clarify and refine the existing paradigm of NO signaling based on averaged local concentrations. This work enables the study of transient intracellular phenomena associated with signaling and therapeutics.


Asunto(s)
Fluorescencia , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Nanotubos de Carbono/química , Óxido Nítrico/metabolismo , Transducción de Señal , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos
7.
Sensors (Basel) ; 14(9): 16196-211, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25184487

RESUMEN

Advancements in optical nanosensor development have enabled the design of sensors using synthetic molecular recognition elements through a recently developed method called Corona Phase Molecular Recognition (CoPhMoRe). The synthetic sensors resulting from these design principles are highly selective for specific analytes, and demonstrate remarkable stability for use under a variety of conditions. An essential element of nanosensor development hinges on the ability to understand the interface between nanoparticles and the associated corona phase surrounding the nanosensor, an environment outside of the range of traditional characterization tools, such as NMR. This review discusses the need for new strategies and instrumentation to study the nanoparticle corona, operating in both in vitro and in vivo environments. Approaches to instrumentation must have the capacity to concurrently monitor nanosensor operation and the molecular changes in the corona phase. A detailed overview of new tools for the understanding of CoPhMoRe mechanisms is provided for future applications.

8.
Carbon Lett (Korean Carbon Soc) ; 34(5): 1343-1354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39015541

RESUMEN

Single-walled carbon nanotubes (SWNT) have a strong and stable near-infrared (nIR) fluorescence that can be used to selectively detect target analytes, even at the single molecule level, through changes in either their fluorescence intensity or emission peak wavelength. SWNTs have been employed as NIR optical sensors for detecting a variety of analytes. However, high costs, long fabrication times, and poor distributions limit the current methods for immobilizing SWNT sensors on solid substrates. Recently, our group reported a protocol for SWNT immobilization with high fluorescence yield, longevity, fluorescence distribution, and sensor response, unfortunately this process takes 5 days to complete. Herein we report an improved method to immobilize SWNT sensors that only takes 2 days and results in higher fluorescence intensity while maintaining a high level of SWNT distribution. We performed surface morphology and chemical composition tests on the original and new synthesis methods and compared the sensor response rates. The development of this new method of attaching SWNT sensors to a platform allows for creation of a sensing system in just 2 days without sacrificing the advantageous characteristics of the original, 5-day platforms.

9.
Adv Colloid Interface Sci ; 317: 102920, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207377

RESUMEN

Hydrogels are excellent water-swollen polymeric materials for use in wearable, implantable, and disposable biosensors. Hydrogels have unique properties such as low cost, ease of preparation, transparency, rapid response to external conditions, biocompatibility and self-adhesion to the skin, flexibility, and strain sensitivity, making them ideal for use in biosensor platforms. This review provides a detailed overview of advanced applications of stimuli-responsive hydrogels in biosensor platforms, from hydrogel synthesis and functionalization for bioreceptor immobilization to several important diagnostic applications. Emphasis is placed on recent advances in the fabrication of ultrasensitive fluorescent and electrically conductive hydrogels and their applications in wearable, implantable, and disposable biosensors for quantitative measurements. Design, modification, and assembly techniques of fluorescent, ionically conductive, and electrically conductive hydrogels to improve performance will be addressed. The advantages and performance improvements of immobilizing bioreceptors (e.g., antibodies, enzymes, and aptamers), and incorporating fluorescent and electrically conductive nanomaterials are described, as are their limitations. Potential applications of hydrogels in implantable, wearable, disposable portable biosensors for quantitative detection of the various bioanalytes (ions, molecules, drugs, proteins, and biomarkers) are discussed. Finally, the global market for hydrogel-based biosensors and future challenges and prospects are discussed in detail.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Dispositivos Electrónicos Vestibles , Hidrogeles , Técnicas Biosensibles/métodos , Proteínas , Conductividad Eléctrica
10.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477618

RESUMEN

Nitric oxide (NO), a free radical present in biological systems, can have many detrimental effects on the body, from inflammation to cancer. Due to NO's short half-life, detection and quantification is difficult. The inability to quantify NO has hindered researchers' understanding of its impact in healthy and diseased conditions. Single-walled carbon nanotubes (SWNTs), when wrapped in a specific single-stranded DNA chain, becomes selective to NO, creating a fluorescence sensor. Unfortunately, the correlation between NO concentration and the SWNT's fluorescence intensity has been difficult to determine due to an inability to immobilize the sensor without altering its properties. Through the use of a recently developed sensor platform, systematic studies can now be conducted to determine the correlation between SWNT fluorescence and NO concentration. This paper explains the methods used to determine the equations that can be used to convert SWNT fluorescence into NO concentration. Through the use of the equations developed in this paper, an easy method for NO quantification is provided. The methods outlined in this paper will also enable researchers to develop equations to determine the concentration of other reactive species through the use of SWNT sensors.

11.
ACS Appl Nano Mater ; 4(1): 33-42, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-34355133

RESUMEN

Single-walled carbon nanotubes (SWNT) are attractive targets for the formation of high-density sensor arrays. Their small size and high reactivity could allow for the spatial and temporal study of extracellular products to a degree which greatly surpasses contemporary sensors. However, current methods of SWNT immobilization produce a low fluorescence yield that requires a combination of high magnification, exposure time, and laser intensity to combat, thus limiting the sensor's applications. In this work, a platform for the immobilization of SWNT sensors with increased fluorescence yield, longevity, fluorescence distribution, and fast reaction times is developed.

12.
Methods Appl Fluoresc ; 9(2): 025005, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33631740

RESUMEN

Sensors that can quickly and accurately diagnose and monitor human health are currently at the forefront of medical research. Single walled carbon nanotube (SWNT) based optical biosensors are a growing area of research due to the high spatiotemporal resolution of their near infrared fluorescence leading to high tissue transparency and unparalleled sensitivity to analytes of interest. Unfortunately, due to the functionalization requirements of SWNT-based sensors, there are concerns surrounding accumulation and persistence when applied in vivo. In this study, we developed protocols to extract and quantify SWNT from complex solutions and show an 89% sensor retention by hydrogel platforms when implanted in vivo. Animal tissues of interest were also extracted and probed for SWNT content showing no accumulation (0.03 mg l-1 SWNT detection limit). The methods developed in this paper demonstrated one avenue for applying SWNT sensors in vivo without concern for accumulation.


Asunto(s)
Colorantes Fluorescentes/análisis , Nanotubos de Carbono/análisis , Alginatos/química , Animales , Técnicas Biosensibles/instrumentación , Oído , Colorantes Fluorescentes/química , Colorantes Fluorescentes/aislamiento & purificación , Hidrogeles/análisis , Hidrogeles/química , Masculino , Nanopartículas/análisis , Nanopartículas/química , Nanotubos de Carbono/química , Ovinos , Extracción en Fase Sólida/métodos
13.
J Anim Sci ; 99(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991192

RESUMEN

The objective of this study was to evaluate effects of different levels of lipopolysaccharide (LPS)-mediated oxidative stress on fresh meat quality. Crossbred lambs (n = 29) were blocked by weight and fed a standard finishing ration for the duration of the study. Lambs were individually housed and treatment groups were administered one of three intravenous injections every 72 h across a three-injection (9-day) cycle: saline control (control), 50 ng LPS/kg body weight (BW) (LPS50), or 100 ng LPS/kg BW (LPS100). Rectal temperatures were measured to indicate inflammatory response. Lambs were harvested at the Loeffel Meat Laboratory and 80 mg of pre-rigor Longissimus lumborum were collected in control and LPS100 treatments within 30 min postmortem for RNA analysis. Wholesale loins were split and randomly assigned 1 or 14 d of wet aging. Chops were fabricated after aging and placed under retail display (RD) for 0 or 7 d. Animal was the experimental unit. LPS-treated lambs had increased (P < 0.05) rectal temperatures at 1, 2, 4, and 24 h post-injection. Transcriptomics revealed significant (Praw < 0.05) upregulation in RNA pathways related to generation of oxidative stress in LPS100 compared with control. A trend was found for tenderness (Warner-Bratzler shear force, WBSF; P = 0.10), chops from LPS50 having lower shear force compared with control at 1 d postmortem. Muscle from LPS50 treatment lambs exhibited greater troponin T degradation (P = 0.02) compared with all treatments at 1 d. Aging decreased WBSF (P < 0.0001), increased sarcoplasmic calcium concentration (P < 0.0001), pH (P < 0.0001), and proteolysis (P < 0.0001) across treatments. Following aging, chops increased discoloration as RD increased (P < 0.0001), with control chops aged 14 d being the most discolored. Chops from lambs given LPS had higher (P < 0.05) a* values compared with control at 14 d of aging. The L* values were greater (P < 0.05) in LPS100 compared with both LPS50 and control. Aging tended (P = 0.0608) to increase lipid oxidation during RD across either aging period. No significant differences (P > 0.05) in sarcomere length, proximate composition, fatty acid composition, or isoprostane content were found. These results suggest that defined upregulation of oxidative stress has no detriment on fresh meat color, but may alter biological pathways responsible for muscle stress response, apoptosis, and enzymatic processes, resulting in changes in tenderness early postmortem.


Asunto(s)
Carne , Oveja Doméstica , Envejecimiento , Animales , Ácidos Grasos , Carne/análisis , Músculo Esquelético , Estrés Oxidativo , Ovinos
14.
Macromol Biosci ; 19(6): e1800469, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30942955

RESUMEN

The use of nanoparticles within living systems is a growing field, but the long-term effects of introducing nanoparticles to a biological system are unknown. If nanoparticles remain localized after in vivo implantation unanticipated side effects due to unknown biodistribution can be avoided. Unfortunately, stabilization and retention of nanoparticles frequently alters their function.[1] In this work multiple hydrogel platforms are developed to look at long-term localization of nanoparticle sensors with the goal of developing a sensor platform that will stabilize and localize the nanoparticles without altering their function. Two different hydrogel platforms are presented, one with a liquid core of sensors and another with sensors decorating the hydrogel's exterior, that are capable of localizing the nanoparticles without inhibiting their function. With the use of these new hydrogel platforms nanoparticle sensors can be easily implanted in vivo and utilized without concerns of nanoparticle impact on the animal.


Asunto(s)
Técnicas Biosensibles , Hidrogeles/química , Nanopartículas/química , Nanotubos de Carbono/química , Alginatos/química , Humanos , Ácido Hialurónico/química , Hidrogeles/uso terapéutico , Ensayo de Materiales , Nanopartículas/uso terapéutico
15.
BioDrugs ; 22(1): 1-10, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18215086

RESUMEN

Advances in the emergence of biological probes, materials, and analytical tools limited to the nanoscale size range, collectively referred to as 'nanotechnology', are increasingly being applied to the understanding and treatment of the major pathophysiological problems in cardiovascular medicine. Analytical techniques based on high-resolution microscopy and molecular-level fluorescence excitation processes capable of detecting nanoscale interactions have been used to elucidate cardiovascular pathology. Nanotechnology has also significantly impacted diagnostic intervention in cardiology, with the use of nanoparticles as contrast agents, for targeted biomedical imaging of vulnerable plaques, for detection of specific pathologic targets signaling the onset of atherosclerosis, and for tracking inflammatory events. Real-time nanoscale biosensors can be used to measure cardiovascular biomarkers, and nanopore sequencing has the potential to speed up the analysis of gene expression in cardiovascular disease. Potential therapeutic applications include the use of nanomaterials in cardiovascular devices, for delivery of drugs and bioactive molecules, or in novel technologies for reducing cholesterol accumulation and for dissolving clots.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Nanoestructuras/uso terapéutico , Nanotecnología/métodos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/fisiopatología , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas/uso terapéutico
16.
ACS Sens ; 3(2): 367-377, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29359558

RESUMEN

Corona phase molecular recognition (CoPhMoRe) is a technique whereby an external, adsorbed phase around a colloidal nanoparticle is selected such that its molecular conformation or interaction recognizes a specific target analyte. In this work, we employ a high-throughput screening of a library of poly(ethylene glycol) (PEG)-conjugated lipids adsorbed onto near-infrared fluorescent single-walled carbon nanotubes to discover a corona phase selective for insulin. We find that a C16-PEG(2000 Da)-ceramide causes a 62% fluorescent intensity decrease of the (10,2) chirality nanotube in the presence of 20 µg/mL insulin. The insulin protein has no prior affinity toward the C16-PEG(2000 Da)-ceramide molecules in free solution, verified by isothermal titration calorimetry, and the interaction occurs only upon their adsorption onto the single-walled carbon nanotube scaffolds. Testing a panel of proteins originating from human blood as well as short 7 amino acid fragments of the insulin peptide rules out nonselective recognition mechanisms such as molecular weight, isoelectric point, and hydrophobicity-based detection. Interestingly, longer fragments of isolated α- and ß-peptide chains of insulin are detected by the construct, albeit with lower affinity compared to that of the intact insulin protein, suggesting that the construct recognizes insulin in its native form and conformation. Finally, the insulin recognition and the quantification of its solution concentration were demonstrated both in buffer and in blood serum, showing that the CoPhMoRe construct works in this complex environment despite the presence of potential nonspecific adsorption. Our results further motivate the search for nonbiological synthetic recognition sites and open up a new path for continuous insulin monitoring in vivo with the hope of improving glycemic control in closed-loop artificial pancreas systems.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Sanguíneas/química , Insulina/sangre , Nanotubos de Carbono/química , Corona de Proteínas/química , Técnicas Biosensibles/instrumentación , Calibración , Ceramidas/química , Colorantes Fluorescentes/química , Polietilenglicoles/química , Unión Proteica
17.
J Neurosci ; 26(10): 2635-44, 2006 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-16525042

RESUMEN

Ca2+ channel beta subunits regulate cell-surface expression and gating of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, beta subunits are predicted to be modular structures composed of five domains (A-E) that are related to the large family of membrane-associated guanylate kinase proteins. The crystal structure of the beta subunit core B-D domains has been reported recently; however, little is known about the structures of the A and E domains. The N-terminal A domain differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4) primarily as the result of two duplications of an ancestral gene containing multiple alternatively spliced exons. At least nine A domain sequences can be generated by alternative splicing. In this report, we focus on one A domain sequence, the highly conserved beta4a A domain. We solved its three-dimensional structure and show that it is expressed in punctate structures throughout the molecular layer of the cerebellar cortex. We also demonstrate that it does not participate directly in Cav2.1 Ca2+ channel gating but serves as a binding site in protein-protein interactions with synaptotagmin I and the LC2 domain of microtubule-associated protein 1A. With respect to beta4 subunits, the interactions are specific for the beta4a splice variant, because they do not occur with the beta4b A domain. These results have strong bearing on our current understanding of the structure of alternatively spliced Ca2+ channel beta subunits and the cell-specific roles they play in the CNS.


Asunto(s)
Empalme Alternativo , Canales de Calcio/química , Canales de Calcio/metabolismo , Cerebelo/metabolismo , Expresión Génica/fisiología , Animales , Western Blotting/métodos , Canales de Calcio/genética , Cerebelo/citología , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Biblioteca de Genes , Humanos , Inmunohistoquímica/métodos , Activación del Canal Iónico/fisiología , Espectroscopía de Resonancia Magnética/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Microinyecciones/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos , Técnicas de Placa-Clamp/métodos , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Sinaptotagmina I/metabolismo , Técnicas del Sistema de Dos Híbridos , Xenopus
18.
J Biomed Nanotechnol ; 12(5): 1035-47, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27305824

RESUMEN

Implantable, near infrared (nIR) fluorescent nanosensors are advantageous for in vivo monitoring of biological analytes since they can be rendered selective for a particular target molecule while utilizing their unique optical properties and the nIR tissue transparency window for information transfer without an internal power source or telemetry. However, basic questions remain regarding the optimal encapsulation platform, geometrical properties, and concentration ranges required for high signal to noise ratio and effective detection through biological tissue. In this work, we systematically explore these variables quantitatively to optimize the performance of such optical nanosensors for biomedical applications. We investigate both alginate and polyethylene glycol (PEG) as model hydrogel systems, encapsulating d(GT)15 ssDNA-wrapped single-walled carbon nanotubes (SWNT) as model fluorescent nanoparticle sensors, responsive to riboflavin. Hydrogel sensors implanted 0.5 mm into thick tissue samples exhibit 50% reduction of initial fluorescence intensity, allowing an optical detection limit of 5.4 mm and 5.1 mm depth in tissue for alginate and PEG gels, respectively, at a SWNT concentration of 10 mg L(-1), and 785 nm laser excitation of 80 mW and 30 s exposure. These findings are supported with in vivo nIR fluorescent imaging of SWNT hydrogels implanted subcutaneously in mice. For the case of SWNT, we find that the alginate system is preferable in terms of emission intensity, sensor response, rheological properties, and shelf life.


Asunto(s)
Nanotubos de Carbono/química , Espectroscopía Infrarroja Corta/métodos , Alginatos/química , Animales , Pollos , Femenino , Fluorescencia , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Límite de Detección , Glándulas Mamarias Animales , Conformación Molecular , Nanopartículas/química , Reología
19.
Nat Commun ; 7: 10241, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26742890

RESUMEN

Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications.


Asunto(s)
Fibrinógeno/química , Ensayos Analíticos de Alto Rendimiento/métodos , Nanotubos de Carbono , Polímeros , Corona de Proteínas , Proteínas Sanguíneas/química , Fluorescencia , Humanos
20.
Adv Healthc Mater ; 4(1): 87-97, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25080048

RESUMEN

While implantable sensors such as the continuous glucose monitoring system have been widely studied, both experimentally and mathematically, relatively little attention has been applied to the potential of insulin sensors. Such sensors can provide feedback control for insulin infusion systems and pumps and provide platforms for the monitoring of other biomarkers in vivo. In this work, the first pharmacokinetic model of an affinity sensor is developed for insulin operating subcutaneously in the limit of where mass transfer across biological membranes reaches a steady state. Using a physiological, compartmental model for glucose, insulin, and glucagon metabolism, the maximum sensor response and its delay time relative to plasma insulin concentration, are calculated based on sensor geometry, placement, and insulin binding parameters for a sensor localized within adipose tissue. A design relation is derived linking sensor dynamics to insulin time lag and placement within human tissue. The model should find utility in understanding dynamic insulin responses and forms the basis of model predictive control algorithms that incorporate sensor dynamics.


Asunto(s)
Técnicas Biosensibles , Electrodos Implantados , Insulina , Modelos Biológicos , Humanos , Insulina/análisis , Insulina/farmacocinética , Insulina/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda