Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 30(14): 24762-24772, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237022

RESUMEN

Solar cells can harvest incident sunlight very efficiently by utilizing grating-based light trapping. As the working principle of such gratings strongly depends on the number as well as the propagation directions of the diffraction orders, the grating period is a key parameter. We present an analytical model for optimizing the grating period, focusing on its impact on light path enhancement and outcoupling probability. Based on the presented model, we formulate guidelines to maximize light trapping in state-of-the-art high-end solar cells. The model increases the understanding of the grating performance in systems like the III-V//Si triple junction solar cell achieving record efficiency.

2.
Opt Express ; 29(14): 22517-22532, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34266013

RESUMEN

Multi-junction solar cells allow to utilize sunlight more effectively than single junction solar cells. In this work, we present optical simulations of III-V-on-silicon solar cells with a metal grating at the back, which experimentally have reached more than 33% power conversion efficiency. First, we perform simulations with the finite element method and compare them with experimental data to validate our model. We find that accurately modeling the investigated geometrical structure is necessary for best agreement between simulation and experimental measurements. Then, we optimize the grating for maximized light trapping using a computationally efficient Bayesian optimization algorithm. The photo current density of the limiting silicon bottom cell is improved from 13.48 mA/cm2 for the experimental grating to 13.85 mA/cm2 for the optimized metal grating. Investigation of all geometrical optimization parameters of the grating (period, height,…) shows that the structure is most sensitive towards the period, a parameter highly controllable in manufacturing by inference lithography. The results show a pathway to exceed the current world record efficiency of the III-V-on-silicon solar cell technology.

3.
Opt Express ; 28(4): 4751-4762, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121707

RESUMEN

We present a detailed illumination model for bifacial photovoltaic modules in a large PV field. The model considers direct light and diffuse light from the sky and treats the illumination of the ground in detail, where it discriminates between illumination of the ground arising from diffuse and direct light. The model calculates the irradiance components on arbitrarily many positions along the module. This is relevant for finding the minimal irradiance, which determines the PV module performance for many PV modules. Finally, we discuss several examples. The code for the model is available online (DOI: 10.5281/zenodo.3543570).

4.
Opt Express ; 28(11): 16027-16029, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32549434

RESUMEN

This special feature issue of Optics Express highlights contributions from authors who presented their latest research in the Optical Devices and Materials for Solar Energy and Solid-state Lighting (PVLED) topical meeting of the OSA Advanced Photonics Congress, held in Burlingame, California, from 29 July - August 1, 2019. This feature issue is comprised of nine contributed papers, expanding upon their respective conference proceedings to cover timely research topics applying optics and photonics to solar energy and solid-state lighting.

5.
Opt Express ; 26(2): A99-A107, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29402059

RESUMEN

The optical response of periodically nanotextured layer stacks with dimensions comparable to the wavelength of the incident light can be computed with rigorous Maxwell solvers, such as the finite element method (FEM). Experimentally, such layer stacks are often prepared on glass superstrates with a thickness, which is orders of magnitude larger than the wavelength. For many applications, light in these thick superstrates can be treated incoherently. The front side of thick superstrate is located far away from the computational domain of the Maxwell solvers. Nonetheless, it has to be considered in order to achieve accurate results. In this contribution, we discuss how solutions of rigorous Maxwell solvers can be corrected for flat front sides of the superstrates with an incoherent a posteriori approach. We test these corrections for hexagonal sinusoidal nanotextured silica-silicon interfaces, which are applied in certain silicon thin-film solar cells. These corrections are determined via a scattering matrix, which contains the full scattering information of the periodically nanotextured structure. A comparison with experimental data reveals that higher-order corrections can predict the measured reflectivity of the samples much better than an often-applied zeroth-order correction.

6.
Opt Express ; 26(10): A487-A497, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801255

RESUMEN

We performed optical simulations using hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) as n-doped interlayer in monolithic perovskite/c-Si heterojunction tandem solar cells. Depending on the adjustable value of its refractive index (2.0 - 2.7) and thickness, nc-SiOx:H allows to optically manage the infrared light absorption in the c-Si bottom cell minimizing reflection losses. We give guidelines for nc-SiOx:H optimization in tandem devices in combination with a systematic investigation of the effect of the surface morphology (flat or textured) on the photocurrent density. For full-flat and rear textured devices, we found matched photocurrents higher than 19 and 20 mA/cm2, respectively, using a 90 nm nc-SiOx:H interlayer with a refractive index of 2.7.

7.
Opt Express ; 25(12): A473-A482, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28788878

RESUMEN

We numerically maximize the achievable photocurrent density of planar perovskite-silicon tandem solar cells for different device architectures. For the optimizations we combine the transfer-matrix method with a simulated annealing algorithm. The optimizations are conducted within experimentally accessible and relevant layer-thickness ranges, which allows to extract applicable device guidelines. A comparison between regular and inverted tandem-cell designs reveals that a rear-emitter silicon heterojunction in combination with an inverted perovskite top-cell can yield a photocurrent, which is 1.4 mA/cm2 higher than that of tandem cells with the usual polarity and a front-emitter silicon bottom cell. Switching from the regular to the inverse architecture leads to over 2% (absolute) gain in power conversion efficiency. Finally we show that an efficiency of 30.8% is achievable for such tandem cells with an optimized perovskite band-gap.

8.
Opt Express ; 24(6): A569-80, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136877

RESUMEN

We numerically study coupling of light into silicon (Si) on glass using different square and hexagonal sinusoidal nanotextures. After describing sinusoidal nanotextures mathematically, we investigate how their design affects coupling of light into Si using a rigorous solver of Maxwell's equations. We discuss nanotextures with periods between 350 nm and 1050 nm and aspect ratios up to 0.5. The maximally observed gain in the maximal achievable photocurrent density coupled into the Si absorber is 7.0 mA/cm2 and 3.6 mA/cm2 for a layer stack without and with additional antireflective silicon nitride layers, respectively. A promising application is the use as smooth anti-reflective coatings in liquid-phase crystallized Si thin-film solar cells.

9.
Opt Express ; 23(19): A1060-71, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406736

RESUMEN

The optimal morphology of nanotextured interfaces, which increase the photocurrent density of thin-film solar cells, is still an open question. While random morphologies have the advantage to scatter light into a broad angular range, they are more difficult to assess with Maxwell solvers, such as the finite-element method (FEM). With this study we aim to identify necessary requirements on the unit cell design for the accurate simulation of nanotextured thin-film solar cells with FEM.

10.
Opt Express ; 21 Suppl 4: A656-68, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24104492

RESUMEN

Thin-film silicon solar cells (TFSSC), which can be manufactured from abundant materials solely, contain nano-textured interfaces that scatter the incident light. We present an approximate very fast algorithm that allows optimizing the surface morphology of two-dimensional nano-textured interfaces. Optimized nano-textures scatter the light incident on the solar cell stronger leading to a higher short-circuit current density and thus efficiency. Our algorithm combines a recently developed scattering model based on the scalar scattering theory, the Perlin-noise algorithm to generate the nano textures and the simulated annealing algorithm as optimization tool. The results presented in this letter allow to push the efficiency of TFSSC towards their theoretical limit.

11.
Nat Nanotechnol ; 17(11): 1214-1221, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36280763

RESUMEN

Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%.

12.
Sci Rep ; 7(1): 2658, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572669

RESUMEN

Recently, liquid phase crystallization of thin silicon films has emerged as a candidate for thin-film photovoltaics. On 10 µm thin absorbers, wafer-equivalent morphologies and open-circuit voltages were reached, leading to 13.2% record efficiency. However, short-circuit current densities are still limited, mainly due to optical losses at the glass-silicon interface. While nano-structures at this interface have been shown to efficiently reduce reflection, up to now these textures caused a deterioration of electronic silicon material quality. Therefore, optical gains were mitigated due to recombination losses. Here, the SMooth Anti-Reflective Three-dimensional (SMART) texture is introduced to overcome this trade-off. By smoothing nanoimprinted SiO x nano-pillar arrays with spin-coated TiO x layers, light in-coupling into laser-crystallized silicon solar cells is significantly improved as successfully demonstrated in three-dimensional simulations and in experiment. At the same time, electronic silicon material quality is equivalent to that of planar references, allowing to reach V oc values above 630 mV. Furthermore, the short-circuit current density could be increased from 21.0 mA cm-2 for planar reference cells to 24.5 mA cm-2 on SMART textures, a relative increase of 18%. External quantum efficiency measurements yield an increase for wavelengths up to 700 nm compared to a state-of-the-art solar cell with 11.9% efficiency, corresponding to a j sc, EQE gain of 2.8 mA cm-2.

13.
Sci Rep ; 7(1): 2170, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526863

RESUMEN

We show that the highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) can successfully be applied as a hole selective front contact in silicon heterojunction (SHJ) solar cells. In combination with a superior electron selective heterojunction back contact based on amorphous silicon (a-Si), mono-crystalline n-type silicon (c-Si) solar cells reach power conversion efficiencies up to 14.8% and high open-circuit voltages exceeding 660 mV. Since in the PEDOT:PSS/c-Si/a-Si solar cell the inferior hybrid junction is determining the electrical device performance we are capable of assessing the recombination velocity (v I ) at the PEDOT:PSS/c-Si interface. An estimated v I of ~400 cm/s demonstrates, that while PEDOT:PSS shows an excellent selectivity on n-type c-Si, the passivation quality provided by the formation of a native oxide at the c-Si surface restricts the performance of the hybrid junction. Furthermore, by comparing the measured external quantum efficiency with optical simulations, we quantify the losses due to parasitic absorption of PEDOT:PSS and reflection of the device layer stack. By pointing out ways to better passivate the hybrid interface and to increase the photocurrent we discuss the full potential of PEDOT:PSS as a front contact in SHJ solar cells.

14.
ACS Appl Mater Interfaces ; 6(24): 22061-8, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25418361

RESUMEN

Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda