RESUMEN
Nutritional interventions may highly contribute to the maintenance or restoration of human health. Grapes (Vitis vinifera) are one of the oldest known beneficial nutritional components of the human diet. Their high polyphenol content has been proven to enhance human health beyond doubt in statistics-based public health studies, especially in the prevention of cardiovascular disease and cancer. The current review concentrates on presenting and classifying polyphenol bioactive molecules (resveratrol, quercetin, catechin/epicatechin, etc.) available in high quantities in Vitis vinifera grapes or their byproducts. The molecular pathways and cellular signaling cascades involved in the effects of these polyphenol molecules are also presented in this review, which summarizes currently available in vitro and in vivo experimental literature data on their biological activities mostly in easily accessible tabular form. New molecules for different therapeutic purposes can also be synthesized based on existing polyphenol compound classes available in high quantities in grape, wine, and grape marc. Therefore an overview of these molecular structures is provided. Novel possibilities as dendrimer nanobioconjugates are reviewed, too. Currently available in vitro and in vivo experimental literature data on polyphenol biological activities are presented in easily accessible tabular form. The scope of the review details the antidiabetic, anticarcinogenic, antiviral, vasoprotective, and neuroprotective roles of grape-origin flavonoids. The novelty of the study lies in the description of the processing of agricultural by-products (grape seeds and skins) of industrial relevance, and the detailed description of the molecular mechanisms of action. In addition, the review of the clinical therapeutic applications of polyphenols is unique as no summary study has yet been done.
Asunto(s)
Catequina , Dendrímeros , Vitis , Antioxidantes/farmacología , Antivirales/análisis , Flavonoides/farmacología , Humanos , Hipoglucemiantes/análisis , Polifenoles/análisis , Polifenoles/farmacología , Polifenoles/uso terapéutico , Quercetina/análisis , Resveratrol , Semillas/química , Vitis/químicaRESUMEN
It is well known that long chain polyunsaturated fatty acids (LCPUFAs) play an important role in neurodevelopment in the perinatal life. The most important source of these fatty acids is the diet, however, they can also be formed in the human body from their shorter chain precursors, the essential fatty acids. Since the WHO recommends exclusive breastfeeding for the first six months after birth, the exclusive source of these fatty acids for breastfed infants is human milk, which can be influenced by the mother's diet. Unsaturated fatty acids can have either cis or trans configuration double bond in their chain with distinct physiological effects. Cis isomeric unsaturated fatty acids have several beneficial effects, while trans isomers are mostly detrimental, because of their similar structure to saturated fatty acids. Trans fatty acids (TFAs) can be further subdivided into industrial (iTFA) and ruminant-derived trans fatty acids (rTFA). However, the physiological effects of these two TFA subgroups may differ. In adults, dietary intake of iTFA has been linked to atherosclerosis, insulin resistance, obesity, chronic inflammation, and increased development of certain cancers, among other diseases. However, iTFAs can have a negative impact on health not only in adulthood but in childhood too. Results from previous studies have shown that iTFAs have a significant negative effect on LCPUFA levels in the blood of newborns and infants. In addition, iTFAs can affect the growth and development of infants, and animal studies suggest that they might even have lasting negative effects later in life. Since the only source of TFAs in the human body is the diet, the TFA content of breast milk may determine the TFA supply of breastfed infants and thus affect the levels of LCPUFAs important for neurodevelopment and the health of infants. In this review, we aim to provide an overview of the TFA content in human milk available in the literature and their potential effects on infant health and development.
RESUMEN
Whether the growth hormone (GH)/insulin-like growth factor 1(IGF-1) axis exerts cardioprotective effects remains controversial; and the underlying mechanism(s) for such actions are unclear. Here we tested the hypothesis that growth hormone-releasing hormone (GHRH) directly activates cellular reparative mechanisms within the injured heart, in a GH/IGF-1 independent fashion. After experimental myocardial infarction (MI), rats were randomly assigned to receive, during a 4-week period, either placebo (n = 14), rat recombinant GH (n = 8) or JI-38 (n = 8; 50 microg/kg per day), a potent GHRH agonist. JI-38 did not elevate serum levels of GH or IGF-1, but it markedly attenuated the degree of cardiac functional decline and remodeling after injury. In contrast, GH administration markedly elevated body weight, heart weight, and circulating GH and IGF-1, but it did not offset the decline in cardiac structure and function. Whereas both JI-38 and GH augmented levels of cardiac precursor cell proliferation, only JI-38 increased antiapoptotic gene expression. The receptor for GHRH was detectable on myocytes, supporting direct activation of cardiac signal transduction. Collectively, these findings demonstrate that within the heart, GHRH agonists can activate cardiac repair after MI, suggesting the existence of a potential signaling pathway based on GHRH in the heart. The phenotypic profile of the response to a potent GHRH agonist has therapeutic implications.
Asunto(s)
Cardiotónicos/farmacología , Hormona Liberadora de Hormona del Crecimiento/agonistas , Hormona del Crecimiento/farmacología , Infarto del Miocardio/prevención & control , Animales , Western Blotting , Peso Corporal/efectos de los fármacos , Ecocardiografía , Femenino , Hormona del Crecimiento/sangre , Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/análogos & derivados , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/farmacología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Hemodinámica/efectos de los fármacos , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Tamaño de los Órganos/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Proteínas Recombinantes/farmacologíaRESUMEN
Mass spectrometry imaging is a sensitive method for detecting molecules in tissues in their native form. Lipids mainly act as energy stores and membrane constituents, but they also play a role in lipid signaling. Previous studies have suggested an important role of lipids in implantation; therefore, our aim was to investigate the lipid changes during this period based on the available literature. The systematic literature search was performed on Ovid MEDLINE, Cochrane Library, Embase, and LILACS. We included studies about lipid changes in the early embryonal stage of healthy mammalian development published as mass spectrometry imaging. The search retrieved 917 articles without duplicates, and five articles were included in the narrative synthesis of the results. Two articles found a different spatial distribution of lipids in the early bovine embryo and receptive uterus. Three articles investigated lipids in mice in the peri-implantation period and found a different spatial distribution of several glycerophospholipids in both embryonic and maternal tissues. Although only five studies from three different research groups were included in this systematic review, it is clear that the spatial distribution of lipids is diverse in different tissues and their distribution varies from day to day. This may be a key factor in successful implantation, but further studies are needed to elucidate the exact mechanism.
RESUMEN
While the role of n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFAs) in the maturation of the infantile nervous system is extensively studied and relatively well-characterized, data on the potential developmental importance of the n-9 long-chain monounsaturated fatty acid (LCMUFA), nervonic acid (NA, C24:1n-9) are scarce and ambiguous. Therefore, the aim of the present study was to reanalyze our available data on the contribution of NA and its LCMUFA precursors, gondoic acid (C20:1n-9) and erucic acid (EA, C22:1n-9) to the fatty acid composition of human milk (HM) during the first month of lactation in mothers of both preterm (PT) and full-term (FT) infants. HM samples were obtained daily during the first week of lactation, and then on the 14th, 21st, and 28th days. Values of the LCMUFAs, C20:1n-9, EA, and NA were significantly higher in colostrum than in transient and mature HM. Consequently, there were highly significant inverse associations between LCMUFA values and the duration of lactation. Moreover, C20:1n-9, EA, and NA values were monotonously, considerably, and at many timepoints significantly higher in PT than in FT HM samples. By the 28th day of lactation, summarized LCMUFA values in PT HM samples declined to the level measured in FT HM samples on the first day of lactation; however, EA and NA values were still significantly higher in PT than in FT HM on the 28th day. Significantly higher availability of LCMUFAs in PT than in FT HM underpins the potential biological role of this hitherto somewhat neglected group of fatty acids.
RESUMEN
A common way to investigate epilepsy and the effect of antiepileptic pharmaceuticals is to analyze the movement patterns of zebrafish larvae treated with different convulsants like pentylenetetrazol (PTZ), pilocarpine, etc. Many articles have been written on this topic, but the research methods and exact settings are not sufficiently defined in most. Here we designed and executed a series of experiments to optimize and standardize the zebrafish epilepsy model. We found that during the light and the dark trials, the zebrafish larvae moved significantly more in the light, independent of the treatment, both in PTZ and pilocarpine-treated and the control groups. As expected, zebrafish larvae treated with convulsants moved significantly more than the ones in the control group, although this difference was higher between the individuals treated with PTZ than pilocarpine. When examining the optimal observation time, we divided the half-hour period into 5-minute time intervals, and between these, the first 5 minutes were found to be the most different from the others. There were fewer significant differences in the total movement of larvae between the other time intervals. We also performed a linear regression analysis with the cumulative values of the distance moved during the time intervals that fit the straight line. In conclusion, we recommend 30 minutes of drug pretreatment followed by a 10-minute test in light conditions with a 5-minute accommodation time. Our result paves the way toward improved experimental designs using zebrafish to develop novel pharmaceutical approaches to treat epilepsy.
Asunto(s)
Epilepsia , Pentilenotetrazol , Animales , Pentilenotetrazol/toxicidad , Pez Cebra , Convulsivantes/toxicidad , Pilocarpina/farmacología , Larva , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: The tumor suppressor gene p53 is implicated in cell cycle control and apoptosis. Antagonists of growth hormone-releasing hormone (GHRH) have been shown to inhibit human experimental prostate cancers. METHODS: We investigated the involvement of p53 apoptotic pathways in this effect. Nude mice bearing xenografted PC-3, DU-145, and MDA-PCa-2b human prostate cancer lines were treated with a new potent GHRH antagonist MZ-J-7-138. To determine whether tumor inhibition by MZ-J-7-138 involves apoptotic mechanisms such as p53 and p21, we evaluated by Western Blot the expression of mutant mt-p53 in PC-3 and DU-145 and of wild type (wt-p53) in MDA-PCa-2b prostate cancers as well as p21. RESULTS: MZ-J-7-138 significantly inhibited the growth of PC-3, DU-145, and MDA-PCa-2b xenografts in nude mice. Androgen deprivation with the LHRH antagonist Cetrorelix enhanced the anti-proliferative effect of GHRH antagonist MZ-J-7-138 on MDA-PCa-2b tumors. The expression of mutant (mt-p53) and p21 protein in PC-3 and DU-145 tumors was significantly decreased by treatment with MZ-J-7-138, whereas wild type wt-p53 expression in MDA-PCA-2b tumors was up regulated by treatment with Cetrorelix. All three models investigated expressed specific, high affinity GHRH receptors. CONCLUSIONS: Our findings indicate that the anti-proliferative effects of GHRH antagonist MZ-J-7-138 and LHRH antagonist Cetrorelix on prostate cancers involve p53 and p21 signaling.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Proteínas Mutantes/genética , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Sermorelina/análogos & derivados , Proteína p53 Supresora de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Ratones , Ratones Desnudos , Proteínas Mutantes/metabolismo , Trasplante de Neoplasias , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sermorelina/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia ArribaRESUMEN
BACKGROUND: Antagonists of growth hormone-releasing hormone (GHRH) inhibit the proliferation of various human cancer cell lines and experimental tumors by mechanisms that include direct action on GHRH receptors in cancer cells. METHODS: In this study, the effects of newly synthesized GHRH antagonists, MIA-313, MIA-602, MIA-604, and MIA-610, were investigated in 2 human ovarian epithelial adenocarcinoma cell lines, OVCAR-3 and SKOV-3, in vitro and in vivo. The expression of receptors for GHRH was demonstrated by Western blot analysis and ligand competition methods in the OVCAR-3 and SKOV-3 cell lines and in tumors from those cells grown in athymic nude mice. The effects of GHRH antagonists on the secretion of vascular endothelial growth factor (VEGF) by OVCAR-3 cells and on the vascularization of OVCAR-3 xenografts also were evaluated. RESULTS: Both the pituitary and the splice variant type 1 (SV1) GHRH receptors were detected in the 2 cell lines and in tumor xenografts, and SV1 was expressed at higher levels. Cell viability assays revealed the antiproliferative effect of all GHRH antagonists that were. Maximal tumor growth inhibition was approximately 75% in both models. MIA-313 and MIA-602 decreased VEGF secretion of OVCAR-3 cells, as measured by enzyme-linked immunosorbent assay, and reduced tumor vascularization in a Matrigel plug assay, but caused no change in the expression of VEGF or VEGF receptor in the terminal ileum of mice with OVCAR-3 tumors. CONCLUSIONS: Results from the current study indicated that a he novel approach based on GHRH antagonists may offer more effective therapeutic alternatives for patients with advanced ovarian cancer and who do not tolerate conventional anti-VEGF therapy.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Neovascularización Patológica/prevención & control , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/tratamiento farmacológico , Sermorelina/análogos & derivados , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/patología , Sermorelina/farmacología , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Polyphenols are capable of decreasing cancer risk. We examined the chemopreventive effects of a green tea (Camellia sinensis) extract, polyphenol extract (a mixture of blackberry (Rubus fruticosus), blackcurrants (Ribes nigrum), and added resveratrol phytoalexin), Chinese bayberry (Myrica rubra) extract, and a coffee (Coffea arabica) extract on 7,12-dimethylbenz[a]anthracene (DMBA) carcinogen-increased miR-134, miR-132, miR-124-1, miR-9-3, and mTOR gene expressions in the liver, spleen, and kidneys of CBA/Ca mice. The elevation was quenched significantly in the organs, except for miR-132 in the liver of the Chinese bayberry extract-consuming group, and miR-132 in the kidneys of the polyphenol-fed group. In the coffee extract-consuming group, only miR-9-3 and mTOR decreased significantly in the liver; also, miR-134 decreased significantly in the spleen, and, additionally, miR-124-1 decreased significantly in the kidney. Our results are supported by literature data, particularly the DMBA generated ROS-induced inflammatory and proliferative signal transducers, such as TNF, IL1, IL6, and NF-κB; as well as oncogenes, namely RAS and MYC. The examined chemopreventive agents, besides the obvious antioxidant and anti-inflammatory effects, mainly blocked the mentioned DMBA-activated factors and the mitogen-activated protein kinase (MAPK) as well, and, at the same time, induced PTEN as well as SIRT tumor suppressor genes.
Asunto(s)
Anticarcinógenos , MicroARNs , 9,10-Dimetil-1,2-benzantraceno/farmacología , Animales , Anticarcinógenos/farmacología , Biomarcadores , Café , Expresión Génica , Ratones , Ratones Endogámicos CBA , MicroARNs/genética , Polifenoles/farmacología , Polifenoles/uso terapéutico , Serina-Treonina Quinasas TOR/genéticaRESUMEN
Specific gene and miRNA expression patterns are potential early biomarkers of harmful environmental carcinogen exposures. The aim of our research was to develop an assay panel by using several miRNAs for the rapid screening of potential carcinogens. The expression changes of miR-124-1, miR-212, miR-132, miR-134, and miR-155 were examined in the spleen, liver, and kidneys of CBA/Ca mice, following the 20 mg/bwkg intraperitoneal 7,12-dimethylbenz(a)anthracene (DMBA) treatment. After 24 h RNA was isolated, the miRNA expressions were analyzed by a real-time polymerase chain reaction and compared to a non-treated control. DMBA induced significant changes in the expression of miR-134, miR-132, and miR-124-1 in all examined organs in female mice. Thus, miR-134, miR-132, and miR-124-1 were found to be suitable biomarkers for the rapid screening of potential chemical carcinogens and presumably to monitor the protective effects of chemopreventive agents.
Asunto(s)
9,10-Dimetil-1,2-benzantraceno , MicroARNs , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Animales , Antracenos , Carcinógenos/toxicidad , Femenino , Ratones , Ratones Endogámicos CBA , MicroARNs/genéticaRESUMEN
DNA methylation is an epigenetic mechanism that is crucial for mammalian development and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA) increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-a harmful substance known to cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.
Asunto(s)
Carcinógenos Ambientales , Ácidos Grasos trans , Animales , Metilación de ADN , Ratones , Aceite de Oliva/farmacología , Retroelementos , Ácidos Grasos trans/efectos adversosRESUMEN
Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.
Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/fisiología , Receptores de Ghrelina/agonistas , Transducción de Señal , Señalización del Calcio , Línea Celular , Endocitosis , Hormona del Crecimiento , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Unión Proteica , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , TransfecciónRESUMEN
The effects of new growth hormone-releasing hormone (GHRH) antagonists JMR-132 and MIA-602 and their mechanism of action were investigated on 2 human glioblastoma cell lines, DBTRG-05 and U-87MG, in vitro and in vivo. GHRH receptors and their main splice variant, SV1 were found on both cell lines. After treatment with JMR-132 or MIA-602, the cell viability decreased significantly. A major decrease in the levels of phospho-Akt, phospho-GSK3ß and phosho-ERK 1/2 was detected at 5 and 10 min following treatment with the GHRH antagonists, whereas elevated levels of phospho-p38 were observed at 24 hr. The expression of caspase-3 and poly(ADP-ribose) (PARP), as the downstream executioners of apoptosis were found to be significantly elevated after treatment. Following treatment of the glioblastoma cells with GHRH antagonists, nuclear translocation of apoptosis inducing factor (AIF) and Endonuclease G (Endo G) and the mitochondrial release of cytochrome c (cyt c) were detected, indicating that the cells were undergoing apoptosis. In cells treated with GHRH antagonists, the collapse of the mitochondrial membrane potential was shown with fluorescence microscopy and JC-1 membrane potential sensitive dye. There were no significant differences between results obtained in DBTRG-05 or U-87MG cell lines. After treatment with MIA-602 and JMR-132, the reduction rate in the growth of DBTRG-05 glioblastoma, xenografted into nude mice, was significant and tumor doubling time was also significantly extended when compared with controls. Our study demonstrates that GHRH antagonists induce apoptosis through key proapoptotic pathways and shows the efficacy of MIA-602 for experimental treatment of glioblastoma.
Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Sermorelina/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Desnudos , Células 3T3 NIH , Isoformas de Proteínas , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Sermorelina/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The enantioselective hydrogenation of methyl or ethyl pyruvate over cinchona-platinum catalyst system (Orito's reaction) is one of the most intensively studied heterogeneous catalytic asymmetric hydrogenation reactions. Studies aiming at systematic changes of the chiral template have played a crucial role in creating hypotheses for the mechanism of Orito's reaction. It is very important to clarify which structural unit of the alkaloid takes part in the enantiodifferentiation, and learn about the role of the different structural units of chiral templates. In this article, we made an attempt to describe the behavior of natural alkaloids, their synthetic derivatives, and analogues as chiral templates in the heterogeneous catalytic asymmetric hydrogenation of activated ketones.
Asunto(s)
Alcaloides/química , Catálisis , EstereoisomerismoRESUMEN
Hypothalamic growth hormone (GH)-releasing hormone (GHRH) regulates the release of GH from the pituitary gland. The receptors for GHRH (GHRH-R) are expressed predominantly in the pituitary. Recent evidence demonstrates that splice variants of the GHRH receptor are also expressed in several nonpituitary tissues, both normal and tumoral, as well as in cancer cell lines. The aim of this study was to investigate the expression of the splice variant 1 (SV-1) of GHRH-R in colorectal cancer (CRC). Seventy patients who underwent partial colectomy for CRC were enrolled in the study. Immunohistochemical expression of SV-1 was studied in paraffin-embedded sections of patient tumor tissue. A cytoplasmic supranuclear expression of SV-1 was observed in CRC as well as in the normal colon mucosa. Tumor grade and pathological stage were negatively correlated with expression of SV-1 (P = 0.012 and P = 0.013, respectively). CRCs metastatic to the liver showed a lower expression of SV-1 than did primary tumors, but this difference was not statistically significant. Kaplan-Meier and Cox univariate survival analyses indicated an improved survival time in patients with high SV-1 compared with those with low GHRH-R expression, but this difference was not statistically significant. The immunohistochemical expression of SV-1 seems to be a favorable prognostic factor in CRC.
Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias Colorrectales/metabolismo , Receptores de Neuropéptido/biosíntesis , Receptores de Hormona Reguladora de Hormona Hipofisaria/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Proteína Axina , Cadherinas/metabolismo , Estudios de Cohortes , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Proteínas del Citoesqueleto/metabolismo , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Isoformas de Proteínas , Estadísticas no ParamétricasRESUMEN
We analyzed the cross-talk between receptors for vasoactive intestinal peptide (VIP) and the human epidermal growth factor family of tyrosine kinase receptors (HER) in oestrogen-dependent (T47D) and oestrogen-independent (MDA-MB-468) human breast cancer cells. VIP treatment slowly increased the expression levels of EGFR but it rapidly augmented phosphorylation of EGFR and HER2 in both cell lines. This pattern of HERs transactivation was blocked by the specific VIP antagonist JV-1-53, supporting the direct involvement of VIP receptors in formation of P-EGFR and P-HER2. VIP-induced transactivation was also abolished by H89 (protein kinase A inhibitor), PP2 (Src inhibitor) or TAPI-1 (inhibitor of matrix metalloproteases), following a differential pattern. These results shed a new light on the specific signalling pathways involved in EGFR/HER2 transactivation by VPAC receptors and suggest the potential usefulness of VIP receptor antagonists together with current antibodies against EGFR/HER2 and/or tyrosine kinase inhibitors for breast cancer therapy.
Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores ErbB/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Genes erbB-2 , Péptido Intestinal Vasoactivo/farmacología , Secuencia de Bases , Western Blotting , Neoplasias de la Mama/genética , Línea Celular Tumoral , Receptores ErbB/metabolismo , Femenino , Humanos , Inmunohistoquímica , Datos de Secuencia Molecular , Fosforilación , ARN Mensajero/biosíntesis , Activación TranscripcionalRESUMEN
BACKGROUND: Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various cancers and affect tumoral growth factors. METHODS: We investigated the effect of a new GHRH antagonist MZ-J-7-138 at doses of 1.25, 2.5, 5 and 10 microg/day s.c. on the growth of PC-3 human androgen independent prostate cancers xenografted s.c. into nude mice. Binding assays were used to investigate GHRH receptors. The levels of IGF-II and VEGF in tumors were measured by radioimmunoassays. RESULTS: Treatment with 2.5, 5, and 10 microg/day MZ-J-7-138 caused a significant dose-dependent growth reduction of PC-3 tumors. The greatest inhibition of 78% was obtained with 10 microg/day. The suppression of IGF-II protein levels in tumors was seen at all doses of MZ-J-7-138, but only 10 microg dose induced a significant inhibition. MZ-J-7-138 also reduced VEGF protein levels, the inhibition being significant at doses of 5 and 10 microg. Specific high affinity binding sites for GHRH were found on PC-3 tumors using (125)I-labeled GHRH antagonist JV-1-42. MZ-J-7-138 displaced radiolabeled JV-1-42 with an IC(50) of 0.32 nM indicating its high affinity to GHRH receptors. Real-time PCR analyses detected splice variant 1 (SV1) of GHRH receptor (GHRH-R) as well as pituitary type of GHRH-R and GHRH ligand. CONCLUSION: Our results demonstrate the efficacy of GHRH antagonist MZ-J-7-138 in suppressing growth of PC-3 prostate cancer at doses lower than previous antagonists. The reduction of levels of growth factors such as VEGF and IGF-II in tumors by GHRH antagonist was correlated with the suppression of tumor growth.
Asunto(s)
Adenocarcinoma/patología , Proliferación Celular/efectos de los fármacos , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Factor II del Crecimiento Similar a la Insulina/metabolismo , Neoplasias de la Próstata/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , ARN Mensajero/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Sermorelina/análogos & derivados , Sermorelina/farmacología , Sermorelina/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Potent antagonists of growth hormone-releasing hormone (GHRH) have been developed for the treatment of disorders caused by excessive GHRH or growth hormone (GH) production and for therapy of cancers. GHRH antagonists suppressed the release of GH and insulin-like growth factor (IGF)-I in transgenic mice overexpressing human (h) GHRH gene, an animal model of human acromegaly. It was also shown in GH3 rat pituitary tumor cells overexpressing the human pituitary GHRH receptor (pGHRH-R) that GHRH antagonists can inhibit c-AMP production and GH secretion through the human receptor. These observations indicate that GHRH antagonists could be used clinically in disorders characterized by excessive GHRH/GH secretion. Many recent studies demonstrate that GHRH antagonists can inhibit tumor growth by several mechanisms. By indirect action through pGHRH-Rs these antagonists suppress circulating GH/IGF-I level, which results in the inhibition of cancers that depend on GH and/or IGF-I as growth factors. However, GHRH antagonists are also effective inhibitors of tumor IGF-II production, which is a potent mitogen but independent of GH. GHRH antagonists can inhibit tumor cell proliferation by direct action on tumor cell receptors, suppressing the IGF-II and other growth factor production of tumor cells. In addition, various human tumors and tumor cell lines secrete GHRH peptide and respond to GHRH with proliferation. This finding suggests that GHRH functions as an autocrine growth factor and that GHRH antagonists can block its effects on tumor growth. Recently, we demonstrated the expression of hGHRH-R and its splice variants in various human cancers. Antiproliferative action of GHRH antagonists on these cancers indicates that the direct inhibitory effects of GHRH antagonists are mediated by tumoral GHRH receptors.
Asunto(s)
Antineoplásicos Hormonales/farmacología , Glándulas Endocrinas/efectos de los fármacos , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Animales , Glándulas Endocrinas/fisiología , HumanosRESUMEN
Recent evidence indicates that growth hormone-releasing hormone (GHRH) functions as a growth factor for gastrointestinal (GI) tumours. The tumourigenic effects of GHRH appear to be mediated by the splice variant 1 (SV-1) of GHRH receptor as well as the full length pituitary type receptor for GHRH (GHRH-R). We examined the protein and mRNA expression of GHRH-R and SV-1 in normal human tissues and tumours of the gastrointestinal (GI-) tract by immunohistochemical staining and reverse transcriptase (RT)-PCR. Squamous cells and squamous cell carcinoma of the oesophagus were negative for GHRH-R and SV-1, while Barrett's mucosa and adenocarcinomas of the oesophagus showed a strong expression of both receptors. The expression of GHRH-R was absent in normal colonic mucosa other than neuroendocrine cells (NE) and lining epithelium (LE) but strong in tubular adenomas of the colon, while the staining for SV-1 was absent in cells other than NE. However, the expression of both receptors was significantly increased in tubulovillous adenomas and colorectal cancers. No differences were seen in protein levels for both receptors between normal and neoplastic tissues of the stomach, pancreas and liver. Because of low mRNA levels for both receptors in all samples tested, only a qualitative assessment could be made. However, mRNA for GHRH-R and SV-1 showed a near-perfect correlation with the assessment of receptor proteins by immunostaining. Our study shows that in contrast to normal mucosa, transformed mucosa of the oesophagus and the colon expresses GHRH-R and SV-1. This aberrant expression of GHRH-R and SV-1 in oesophageal and colorectal malignancies may provide a molecular target for a therapeutic approach based on GHRH antagonists.
Asunto(s)
Colon/química , Neoplasias del Colon/química , Neoplasias Esofágicas/química , Esófago/química , Receptores de Neuropéptido/análisis , Receptores de Hormona Reguladora de Hormona Hipofisaria/análisis , Neoplasias del Colon/tratamiento farmacológico , Ciclina D1/fisiología , Neoplasias Esofágicas/tratamiento farmacológico , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Humanos , Inmunohistoquímica , Mucosa Intestinal/química , Empalme del ARN , ARN Mensajero/análisis , Receptores de Neuropéptido/química , Receptores de Neuropéptido/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/química , Receptores de Hormona Reguladora de Hormona Hipofisaria/genéticaRESUMEN
This article reviews the potential clinical uses of antagonists of growth-hormone-releasing hormone (GHRH) for tumor therapy. GHRH antagonists suppress the growth of various human cancer lines xenografted into nude mice; such tumors include breast, ovarian, endometrial and prostate cancers, lung cancers (small-cell lung carcinomas and non-small-cell lung carcinomas), renal, pancreatic, gastric and colorectal carcinomas, brain tumors (malignant gliomas), osteogenic sarcomas and non-Hodgkin's lymphomas. The antitumor effects of GHRH antagonists are exerted in part indirectly through the inhibition of the secretion of GH from the pituitary and the resulting reduction in the levels of hepatic insulin-like growth factor I (IGF-I). The main effects of the GHRH antagonists are, however, exerted directly on tumors. GHRH ligand is present in various human cancers and might function as an autocrine and/or paracrine growth factor. Pituitary-type GHRH receptors and their splice variants are also found in many human cancers. The inhibitory effects of GHRH antagonists seem to be due to the blockade of action of tumoral GHRH. Antagonists of GHRH can also suppress cancer growth by blocking production of IGF-I and/or IGF-II by the tumor. Further development of GHRH antagonists that are still-more potent should lead to potential therapeutic agents for various cancers.