Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Curr Issues Mol Biol ; 46(8): 8852-8873, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39194740

RESUMEN

Reactive oxygen species (ROS) are widely regarded as signaling molecules and play essential roles in various cellular processes, but when present in excess, they can lead to oxidative stress (OS). Growing evidence suggests that the OS plays a critical role in the pathogenesis of HIV infection and is associated with several comorbidities in HIV-infected individuals. ROS, generated both naturally during mitochondrial oxidative metabolism and as a response to various cellular processes, can trigger host antiviral responses but can also promote viral replication. While the multifaceted roles of ROS in HIV pathophysiology clearly need more investigation, this review paper unravels the mechanisms of OS generation in the context of HIV infections, offering insights into HIV viral protein-mediated and antiretroviral therapy-generated OS. Though the viral protein Tat is significantly attributed to the endogenous cellular increase in ROS post HIV infection, this paper sums up the contribution of other viral proteins in HIV-mediated elicitation of ROS. Given the investigations recognizing the significant role of ROS in the onset and progression of diverse pathologies, the paper also explores the critical function of ROS in the mediation of an of array of pathologies associated with HIV infection and retroviral therapy. HIV patients are observed with disruption to the antioxidant defense system, the antioxidant therapy is gaining focus as a potential therapeutic intervention and is well discussed. While ROS play a significant role in the HIV scenario, further exploratory studies are imperative to identifying alternative therapeutic strategies that could mitigate the toxicities and pathologies associated with ART-induced OS.

2.
Virol J ; 20(1): 173, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537596

RESUMEN

BACKGROUND: Several anti-retroviral drugs are available against Human immunodeficiency virus type-1, but have multiple adverse side effects. Hence, there is an incessant compulsion for effectual anti-retroviral agents with minimal or no intricacy. Traditionally, natural products have been the most successful source for the development of new medications. Withania somnifera, also known as Ashwagandha, is the utmost treasured medicinal plant used in Ayurveda, which holds the potential to give adaptogenic, immunomodulatory, and antiviral effects. However, its effect on HIV-1 replication at the cellular level has never been explored. Herein, we focused on the anti-HIV-1 activity and the probable mechanism of action of hydroalcoholic and aqueous extracts of Withania somnifera roots and its phytomolecules. METHODS: The cytotoxicity of the extracts was determined through MTT assay, while the in vitro anti-HIV-1 activity was assessed in TZM-bl cells against the HIV-1 strains of X4 and R5 subtypes. Results were confirmed in peripheral blood mononuclear cells, using the HIV-1 p24 antigen assay. Additionally, the mechanism of action was determined through the Time of Addition assay, which was further validated through the series of enzymatic assays, i.e. HIV-1 Integrase, Reverse transcriptase, and Protease assays. To explore the role of the identified active metabolites of Withania somnifera in antiretroviral activity, molecular docking analyses were performed against these key HIV-1 replication enzymes. RESULTS: The hydroalcoholic and aqueous extracts of Withania somnifera roots were found to be safer at the sub-cytotoxic concentrations and exhibited their ability to inhibit replication of two primary isolates of HIV-1 through cell-associated and cell-free assays, in dose-dependent kinetics. Several active phytomolecules found in Withania somnifera successfully established hydrogens bonds in the active binding pocket site residues responsible for the catalytic activity of HIV replication and therefore, signifying their role in the attenuation of HIV-1 infection as implied through the in silico molecular docking studies. CONCLUSIONS: Our research identified both the hydroalcoholic and aqueous extracts of Withania somnifera roots as potent inhibitors of HIV-1 infection. The in silico analyses also indicated the key components of Withania somnifera with the highest binding affinity against the HIV-1 Integrase by 12-Deoxywithastramonolide and 27-Hydroxywithanone, HIV-1 Protease by Ashwagandhanolide and Withacoagin, and HIV-1 Reverse transcriptase by Ashwagandhanolide and Withanolide B, thereby showing possible mechanisms of HIV-1 extenuation. Overall, this study classified the role of Withania somnifera extracts and their active compounds as potential agents against HIV-1 infection.


Asunto(s)
VIH-1 , Plantas Medicinales , Virosis , Withania , Humanos , Withania/química , Withania/metabolismo , Leucocitos Mononucleares , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antirretrovirales
3.
BMC Complement Med Ther ; 23(1): 82, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934258

RESUMEN

Antiretroviral therapy is the only treatment option for HIV-infected patients; however, it has certain drawbacks in terms of developing multiple toxic side effects. Thus, there is a continuous need to explore safe and efficacious anti-retroviral agents. Carica papaya Linn and Psidium guajava are known for their various biological activities. In this study, we characterized the bioactive fractions of methanolic leaves extract from both plants using the High-resolution electrospray ionization mass spectrometry (HR-ESI-MS) technique, followed by the investigation of their potential as anti-HIV-1 and antioxidant agents through in vitro mechanistic assays. The anti-HIV-1 activity was examined in TZM-bl cells through luciferase gene assay against two different clades of HIV-1 strains, whereas the intracellular ROS generation was analyzed by Fluorescence-Activated Cell Sorting. Additionally, the mechanisms of action of these phyto-extracts were determined through the Time-of-addition assay. The characterization of Carica papaya Linn and Psidium guajava leaves extract through HR-ESI-MS fragmentation showed high enrichment of various alkaloids, glycosides, lipids, phenolic compounds, terpenes, and fatty acids like bioactive constituents. Both the phyto-extracts were found to be less toxic and exhibited potent antiviral activity against HIV-1 strains. Furthermore, the phyto-extracts also showed a decreased intracellular ROS in HIV-1 infected cells due to their high antioxidant potential. Overall, our study suggests the anti-HIV-1 potential of Carica papaya Linn and Psidium guajava leaves extract due to the synergistic action of multiple bioactive constituents.


Asunto(s)
Carica , Infecciones por VIH , Psidium , Humanos , Extractos Vegetales/química , Carica/química , Especies Reactivas de Oxígeno , Antioxidantes , Antivirales , Infecciones por VIH/tratamiento farmacológico
4.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36290665

RESUMEN

Antiretroviral therapy is the single existing therapy for patients infected with HIV; however, it has drawbacks in terms of toxicity and resistance. Thus, there is a continuous need to explore safe and efficacious anti-retroviral agents. C-Phycocyanin (C-PC) is a phycobiliprotein, which has been known for various biological properties; however, its effect on HIV-1 replication needs revelation. This study aimed to identify the inhibitory effects of C-PC on HIV-1 using in vitro and in silico approaches and to assess its role in the generation of mitochondrial reactive oxygen species (ROS) during HIV-1 infection. In vitro anti-HIV-1 activity of C-PC was assessed on TZM-bl cells through luciferase gene assay against four different clades of HIV-1 strains in a dose-dependent manner. Results were confirmed in PBMCs, using the HIV-1 p24 antigen assay. Strong associations between C-PC and HIV-1 proteins were observed through in silico molecular simulation-based interactions, and the in vitro mechanistic study confirmed its target by inhibition of reverse transcriptase and protease enzymes. Additionally, the generation of mitochondrial ROS was detected by the MitoSOX and DCF-DA probe through confocal microscopy. Furthermore, our results confirmed that C-PC treatment notably subdued the fluorescence in the presence of the virus, thus reduction of ROS and the activation of caspase-3/7 in HIV-1-infected cells. Overall, our study suggests C-PC as a potent and broad in vitro antiviral and antioxidant agent against HIV-1 infection.

5.
Cytotechnology ; 70(2): 523-536, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28702859

RESUMEN

The current study was undertaken to study the effect of Spirulina platensis (Spirulina) extract on enhanced oxidative stress during high glucose induced cell death in H9c2 cells. H9c2 cultured under high glucose (33 mM) conditions resulted in a noteworthy increase in oxidative stress (free radical species) accompanied by loss of mitochondrial membrane potential, release of cytochrome c, increase in caspase activity and pro-apoptotic protein (Bax). Spirulina extract (1 µg/mL), considerably inhibited increased ROS and RNS levels, reduction in cytochrome c release, raise in mitochondrial membrane potential, decreased the over expression of proapoptotic protein Bax and suppressed the Bax/Bcl2 ratio with induced apoptosis without affecting cell viability. Overall results suggest that Spirulina extract plays preventing role against enhanced oxidative stress during high glucose induced apoptosis in cardiomyoblasts as well as related dysfunction in H9c2 cells.

6.
Nat Prod Res ; 31(12): 1468-1471, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27868445

RESUMEN

In this study, we report the in vitro anti-HIV1 activity of acetone and methanol extracts of fruit of Terminalia paniculata. Cytotoxicity tests were conducted on TZM-bl cells and peripheral blood mononuclear cells (PBMC), the CC50 values of both the extracts were ≥260 µg/mL. Using TZM-bl cells, the extracts were tested for their ability to inhibit replication of two primary isolates HIV-1 (X4, Subtype D) and HIV-1 (R5, Subtype C). The activity against HIV-1 primary isolate (R5, Subtype C) was confirmed using activated PBMC and by quantification of HIV-1 p24 antigen. Both the extracts showed anti-HIV1 activity in a dose-dependent manner. The EC50 values of the acetone and methanol extracts of T. paniculata were ≤10.3 µg/mL. The enzymatic assays were performed to determine the mechanism of action which indicated that the anti-HIV1 activity might be due to inhibition of reverse transcriptase (≥77.7% inhibition) and protease (≥69.9% inhibition) enzymes.


Asunto(s)
Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Extractos Vegetales/farmacología , Terminalia , Frutas , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda