Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Heart Fail Rev ; 25(3): 549, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31713084

RESUMEN

The scholarship support information in Acknowledgement was missing.

2.
Heart Fail Rev ; 24(1): 69-80, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29995216

RESUMEN

Endothelial dysfunction plays as an important role on mismatch responses that occur during exercise in patients with congestive heart failure (CHF). However, cardiac rehabilitation, a core component of management of CHF patients, can improve endothelial function, contributing to reduce the morbidity and mortality of these patients. The primary aims of this review were to describe the importance of flow-mediated dilatation (FMD) as a non-invasive validation tool to assess endothelial dysfunction and to highlight the relevance of scientific studies that evaluated the effects of exercise interventions on peripheral vascular endothelial function as measured by FMD in patients with CHF with both preserved and reduced ejection fraction.


Asunto(s)
Terapia por Ejercicio , Ejercicio Físico , Insuficiencia Cardíaca/rehabilitación , Vasodilatación , Arteria Braquial , Terapia de Resincronización Cardíaca , Endotelio Vascular/fisiopatología , Humanos , Volumen Sistólico , Resultado del Tratamiento , Disfunción Ventricular Izquierda/fisiopatología
3.
Braz J Med Biol Res ; 56: e12576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377306

RESUMEN

Type 2 diabetes mellitus (T2DM) is characterized by endothelial dysfunction that causes micro- and macrovascular complications. Low intensity therapeutic ultrasound (LITUS) may improve endothelial function, but its effects have not been investigated in these patients. The aim of our study was to compare the effects of pulsed (PUT) and continuous (CUT) waveforms of LITUS on the endothelium-dependent vasodilation of T2DM patients. The present randomized crossover trial had a sample of twenty-three patients (7 men) diagnosed with T2DM, 55.6 (±9.1) years old, with a body mass index of 28.6 (±3.3) kg/m2. All patients were randomized and submitted to different waveforms (Placebo, CUT, and PUT) of LITUS and the arterial endothelial function was evaluated. The LITUS of 1 MHz was applied in pulsed (PUT: 20% duty cycle, 0.08 W/cm2 SATA), continuous (CUT: 0.4 W/cm2 SPTA), and Placebo (equipment off) types of waves during 5 min on the brachial artery. Endothelial function was evaluated using the flow-mediated dilation (FMD) technique. PUT (mean difference 2.08%, 95% confidence interval 0.65 to 3.51) and CUT (mean difference 2.32%, 95% confidence interval 0.89 to 3.74) increased the %FMD compared to Placebo. In the effect size analysis, PUT (d=0.65) and CUT (d=0.65) waveforms presented moderate effects in the %FMD compared to Placebo. The vasodilator effect was similar in the different types of waves. Pulsed and continuous waveforms of LITUS of 1 MHz improved the arterial endothelial function in T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Terapia por Ultrasonido , Masculino , Humanos , Vasodilatación , Terapia por Ultrasonido/métodos , Endotelio Vascular , Vasodilatadores/farmacología , Vasodilatadores/uso terapéutico , Arteria Braquial/diagnóstico por imagen
4.
Braz J Med Biol Res ; 54(7): e10865, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34008758

RESUMEN

This study verified the effects of respiratory muscle training (RMT) on hemodynamics, heart rate (HR) variability, and muscle morphology in rats with streptozotocin-induced diabetes mellitus (DM). Thirty-six male Wistar rats were randomized into 4 groups and 34 completed the study: i) sham-sedentary (Sham-ST; n=9); ii) sham-RMT (Sham-RMT; n=9); iii) DM-sedentary (DM-ST; n=8); and iv) DM-RMT (DM-RMT; n=8). Hemodynamics were assessed by central cannulation, and R-R intervals were measured by electrocardiogram. In addition, the effects of RMT on the cross-sectional area of the diaphragm, anterior tibial, and soleus muscles were analyzed. The induction of DM by streptozotocin resulted in weight loss, hyperglycemia, reduced blood pressure, and attenuated left ventricular contraction and relaxation (P<0.05). We also observed a decrease in root mean square of successive differences between adjacent RR intervals (RMSSD) index and in the cross-sectional area of the muscles assessed, specifically the diaphragm, soleus, and anterior tibial muscles in diabetic rats (P<0.05). Interestingly, RMT led to an increase in RMSSD in rats with DM (P<0.05). The induction of DM produced profound deleterious changes in the diaphragmatic and peripheral muscles, as well as impairments in cardiovascular hemodynamics and autonomic control. Nevertheless, RMT may beneficially attenuate autonomic changes and improve parasympathetic modulation.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Ejercicios Respiratorios , Frecuencia Cardíaca , Hemodinámica , Masculino , Ratas , Ratas Wistar , Músculos Respiratorios
5.
Braz J Med Biol Res ; 51(6): e6962, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29791599

RESUMEN

Despite the appeal of ultra-short-term heart rate variability (HRV) methods of analysis applied in the clinical and research settings, the number of studies that have investigated HRV by analyzing R-R interval (RRi) recordings shorter than 5 min is still limited. Moreover, ultra-short-term HRV analysis has not been extensively validated during exercise and, currently, no indications exist for its applicability during resistance exercise. The aim of the present study was to compare ultra-short-term HRV analysis with standard short-term HRV analysis during low-intensity, dynamic, lower limb resistance exercise in healthy elderly subjects. Heart rate (HR) and RRi signals were collected from 9 healthy elderly men during discontinuous incremental resistance exercise consisting of 4-min intervals at low intensities (10, 20, 30, and 35% of 1-repetition maximum). The original RRi signals were segmented into 1-, 2-, and 3-min sections. HRV was analyzed in the time domain (root mean square of the of differences between adjacent RRi, divided by the number of RRi, minus one [RMSSD]), RRi mean value and standard deviation [SDNN] (percentage of differences between adjacent NN intervals that are greater than 50 ms [pNN50]), and by non-linear analysis (short-term RRi standard deviation [SD1] and long-term RRi standard deviation [SD2]). No significant difference was found at any exercise intensity between the results of ultra-short-term HRV analysis and the results of standard short-term HRV analysis. Furthermore, we observed excellent (0.70 to 0.89) to near-perfect (0.90 to 1.00) concordance between linear and non-linear parameters calculated over 1- and 2-min signal sections and parameters calculated over 3-min signal sections. Ultra-short-term HRV analysis appears to be a reliable surrogate of standard short-term HRV analysis during resistance exercise in healthy elderly subjects.


Asunto(s)
Frecuencia Cardíaca/fisiología , Entrenamiento de Fuerza/métodos , Anciano , Electrocardiografía , Humanos , Masculino , Valores de Referencia , Factores de Tiempo
6.
Braz. j. med. biol. res ; 56: e12576, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1447685

RESUMEN

Type 2 diabetes mellitus (T2DM) is characterized by endothelial dysfunction that causes micro- and macrovascular complications. Low intensity therapeutic ultrasound (LITUS) may improve endothelial function, but its effects have not been investigated in these patients. The aim of our study was to compare the effects of pulsed (PUT) and continuous (CUT) waveforms of LITUS on the endothelium-dependent vasodilation of T2DM patients. The present randomized crossover trial had a sample of twenty-three patients (7 men) diagnosed with T2DM, 55.6 (±9.1) years old, with a body mass index of 28.6 (±3.3) kg/m2. All patients were randomized and submitted to different waveforms (Placebo, CUT, and PUT) of LITUS and the arterial endothelial function was evaluated. The LITUS of 1 MHz was applied in pulsed (PUT: 20% duty cycle, 0.08 W/cm2 SATA), continuous (CUT: 0.4 W/cm2 SPTA), and Placebo (equipment off) types of waves during 5 min on the brachial artery. Endothelial function was evaluated using the flow-mediated dilation (FMD) technique. PUT (mean difference 2.08%, 95% confidence interval 0.65 to 3.51) and CUT (mean difference 2.32%, 95% confidence interval 0.89 to 3.74) increased the %FMD compared to Placebo. In the effect size analysis, PUT (d=0.65) and CUT (d=0.65) waveforms presented moderate effects in the %FMD compared to Placebo. The vasodilator effect was similar in the different types of waves. Pulsed and continuous waveforms of LITUS of 1 MHz improved the arterial endothelial function in T2DM patients.

7.
Braz. j. med. biol. res ; 54(7): e10865, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1249318

RESUMEN

This study verified the effects of respiratory muscle training (RMT) on hemodynamics, heart rate (HR) variability, and muscle morphology in rats with streptozotocin-induced diabetes mellitus (DM). Thirty-six male Wistar rats were randomized into 4 groups and 34 completed the study: i) sham-sedentary (Sham-ST; n=9); ii) sham-RMT (Sham-RMT; n=9); iii) DM-sedentary (DM-ST; n=8); and iv) DM-RMT (DM-RMT; n=8). Hemodynamics were assessed by central cannulation, and R-R intervals were measured by electrocardiogram. In addition, the effects of RMT on the cross-sectional area of the diaphragm, anterior tibial, and soleus muscles were analyzed. The induction of DM by streptozotocin resulted in weight loss, hyperglycemia, reduced blood pressure, and attenuated left ventricular contraction and relaxation (P<0.05). We also observed a decrease in root mean square of successive differences between adjacent RR intervals (RMSSD) index and in the cross-sectional area of the muscles assessed, specifically the diaphragm, soleus, and anterior tibial muscles in diabetic rats (P<0.05). Interestingly, RMT led to an increase in RMSSD in rats with DM (P<0.05). The induction of DM produced profound deleterious changes in the diaphragmatic and peripheral muscles, as well as impairments in cardiovascular hemodynamics and autonomic control. Nevertheless, RMT may beneficially attenuate autonomic changes and improve parasympathetic modulation.


Asunto(s)
Animales , Masculino , Ratas , Diabetes Mellitus Experimental , Músculos Respiratorios , Ejercicios Respiratorios , Ratas Wistar , Frecuencia Cardíaca , Hemodinámica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda