Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
PLoS Pathog ; 18(8): e1010696, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35925884

RESUMEN

As effector innate immune cells and as a host to the protozoan parasite Leishmania, macrophages play a dual role in antileishmanial immunoregulation. The 2 key players in this immunoregulation are the macrophage-expressed microRNAs (miRNAs) and the macrophage-secreted cytokines. miRNAs, as small noncoding RNAs, play vital roles in macrophage functions including cytokines and chemokines production. In the reverse direction, Leishmania-regulated cytokines alter miRNAs expression to regulate the antileishmanial functions of macrophages. The miRNA patterns vary with the time and stage of infection. The cytokine-regulated macrophage miRNAs not only help parasite elimination or persistence but also regulate cytokine production from macrophages. Based on these observations, we propose a novel immunoregulatory framework as a scientific rationale for antileishmanial therapy.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , MicroARNs , Parásitos , Animales , Antiprotozoarios/metabolismo , Citocinas/metabolismo , Humanos , Leishmania/metabolismo , Leishmaniasis/metabolismo , Macrófagos , MicroARNs/metabolismo , Parásitos/metabolismo
2.
Cytokine ; 174: 156461, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38065046

RESUMEN

Establishing a balance between Th1 and Th2 subsets and M1- and M2-type macrophages is essential for the control of Leishmania infection. The suppressors of cytokine secretion (SOCS) proteins, particularly SOCS1 and SOCS3, play a significant role in regulating cytokine-triggered signaling pathways, thereby impacting the macrophage-and effector T-cell mediated antileishmanial immune response. In addition to the pro-inflammatory cytokines, Leishmania-derived lipophosphoglycan (LPG) and CpG-DNA interact with TLR2 and TLR9 to trigger SOCS expression. The aberrant levels of SOCS1 and SOCS3 expression in Leishmania-infected macrophages impair macrophage-T-cell interaction perturbing the balance in macrophage subsets polarization. This hinders macrophage apoptosis and macrophage-mediated leishmanicidal activity, both support the establishment of infection and parasite replication. Furthermore, aberrant SOCS3 levels in T-cells disrupt Th1 differentiation and aid in parasite replication, lesion development, and pathological immune responses. Strategically, selective modulation of SOCS expression and function in immune effector cells may reduce parasite survival and prevent disease progression.


Asunto(s)
Leishmania , Proteínas Supresoras de la Señalización de Citocinas , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Citocinas/metabolismo , Inmunidad
3.
Cytokine ; 182: 156721, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106576

RESUMEN

AIMS: Acute lymphoblastic leukemia (ALL) is the most common type of pediatrics cancer. Chemokines exert different roles in leukemia process through leukocyte recruitment and regulation of disease severity. Due to the prominent roles of chemokine/receptor axes, this study aimed to measure the blood expression levels of CCR4 and their ligands in pediatrics with B-cell ALL (B-ALL). We also evaluated the impact of cytotoxic chemotherapy on this axis. MATERIAL AND METHOD: Thirty children suffering from B-ALL were included in the study and followed up for 30 days after completion of a chemotherapy course. The blood sampling was performed before and after chemotherapy. 30 healthy donors have also entered the study as control subjects. The mRNA expression of CCL17, CCL22 and CCR4 genes was determined by quantitative real-time PCR. The frequency of the peripheral blood mononuclear cells expressing CCR4 (CCR4 + PBMCs) was also evaluated by the flow cytometry method. Moreover, we evaluated the association of the CCL17/CCL22-CCR4 axis with some diagnostic, prognostic and predictive biomarkers in ALL patients. RESULTS: There was overexpression of the CCL17/CCL22-CCR4 axis along with lactate dehydrogenase (LDH) in pediatrics with B-ALL compared to healthy controls. After induction of chemotherapy, the blood expression levels of the CCL17/CCL22-CCR4 axis have reached the levels of healthy controls. The findings for the blood expression levels of CCR4 were also confirmed using flow cytometry. CONCLUSION: The CCL17/CCL22-CCR4 axis can be used as a novel predictive and prognostic biomarker in B-ALL.


Asunto(s)
Quimiocina CCL17 , Quimiocina CCL22 , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Receptores CCR4 , Humanos , Receptores CCR4/metabolismo , Receptores CCR4/genética , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Niño , Masculino , Quimiocina CCL17/genética , Quimiocina CCL17/sangre , Quimiocina CCL17/metabolismo , Femenino , Preescolar , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangre , Leucocitos Mononucleares/metabolismo , Adolescente , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Pronóstico
4.
Cytotherapy ; 26(8): 797-805, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38625068

RESUMEN

Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.


Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Neutrófilos , Humanos , Células Madre Pluripotentes Inducidas/citología , Neutrófilos/metabolismo , Neutrófilos/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo
5.
Helicobacter ; 29(3): e13105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38924222

RESUMEN

Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Proteínas Supresoras de la Señalización de Citocinas , Humanos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/microbiología , Helicobacter pylori/inmunología , Helicobacter pylori/patogenicidad , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Interacciones Huésped-Patógeno/inmunología , Transducción de Señal
6.
Cell Biochem Funct ; 42(7): e4116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233464

RESUMEN

Apelin, a bioactive peptide that serves as an endogenous ligand for the apelin receptor (APJ), is overexpressed in various types of cancers and contributes to cancer cell proliferation, viability, migration, angiogenesis, and metastasis, as well as immune deviation. Noncoding RNAs (ncRNAs) regulate gene expression, and there is growing evidence suggesting a bidirectional crosstalk between ncRNAs (including long noncoding RNAs [lncRNAs], circular RNAs [circRNAs], and microRNAs [miRNAs]) and apelin in cancers. Certain miRNAs can directly target the apelin and inhibit its expression, thereby suppressing tumor growth. It has been indicated that miR-224, miR-195/miR-195-5p, miR-204-5p, miR-631, miR-4286, miR-637, miR-4493, and miR-214-3p target apelin mRNA and influence its expression in prostate cancer, lung cancer, esophageal cancer, chondrosarcoma, melanoma, gastric cancer, glioma, and hepatocellular carcinoma (HCC), respectively. Moreover, circ-NOTCH1, circ-ZNF264, and lncRNA BACE1-AS upregulate apelin expression in gastric cancer, glioma, and HCC, respectively. On the other hand, apelin has been shown to regulate the expression of certain ncRNAs to affect tumorigenesis. It was revealed that apelin affects the expression of circ_0000004/miR-1303, miR-15a-5p, and miR-106a-5p in osteosarcoma, lung cancer, and prostate cancer, respectively. This review explains a bidirectional interplay between ncRNAs and apelin in cancers to provide insights concerning the molecular mechanisms underlying this crosstalk and potential implications for cancer therapy.


Asunto(s)
Apelina , Neoplasias , Humanos , Apelina/metabolismo , Apelina/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , ARN no Traducido/metabolismo , ARN no Traducido/genética , MicroARNs/metabolismo , MicroARNs/genética , Progresión de la Enfermedad , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Animales
7.
Immunopharmacol Immunotoxicol ; 46(1): 73-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37647347

RESUMEN

PURPOSE: In dendritic cells (DCs), leptin as an immune-regulating hormone, increases the IL-12 generation whereas it reduces the IL-10 production, thus contributing to TH1 cell differentiation. Using a murine model of breast cancer (BC), we evaluated the impacts of the Leptin and/or lipopolysaccharide (LPS)-treated DC vaccine on various T-cell-related immunological markers. MATERIALS AND METHODS: Tumors were established in mice by subcutaneously injecting 7 × 105 4T1 cells into the right flank. Mice received the DC vaccines pretreated with Leptin, LPS, and both Leptin/LPS, on days 12 and 19 following tumor induction. The animals were sacrificed on day 26 and after that the frequency of the splenic cytotoxic T lymphocytes (CTLs) and TH1 cells; interferon gamma (IFN-γ), interleukin 12 (IL-12) and tumor growth factor beta (TGF-ß) generation by tumor lysate-stimulated spleen cells, and the mRNA expression of T-bet, FOXP3 and Granzyme B in the tumors were measured with flow cytometry, ELISA and real-time PCR methods, respectively. RESULTS: Leptin/LPS-treated mDC group was more efficient in blunting tumor growth (p = .0002), increasing survival rate (p = .001), and preventing metastasis in comparison with the untreated tumor-bearing mice (UT-control). In comparison to the UT-control group, treatment with Leptin/LPS-treated mDC also significantly increased the splenic frequencies of CTLs (p < .001) and TH1 cells (p < .01); promoted the production of IFN-γ (p < .0001) and IL-12 (p < .001) by splenocytes; enhanced the T-bet (p < .05) and Granzyme B (p < .001) expression, whereas decreased the TGF-ß and FOXP3 expression (p < .05). CONCLUSION: Compared to the Leptin-treated mDC and LPS-treated mDC vaccines, the Leptin/LPS-treated mDC vaccine was more effective in inhibiting BC development and boosting immune responses against tumor.


Asunto(s)
Neoplasias , Vacunas , Ratones , Animales , Lipopolisacáridos/farmacología , Granzimas/metabolismo , Leptina/metabolismo , Inmunidad Celular , Factor de Crecimiento Transformador beta/metabolismo , Interferón gamma/metabolismo , Modelos Animales , Neoplasias/metabolismo , Interleucina-12 , Vacunas/metabolismo , Células Dendríticas , Factores de Transcripción Forkhead/metabolismo
8.
Cell Immunol ; 393-394: 104778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37907046

RESUMEN

Regulatory T (Treg) cells interact with a variety of resident cells and infiltrated immune cells in the central nervous system (CNS) to modulate neuroinflammation and neurodegeneration. Extracellular amyloid-ß (Aß) peptide deposition and secondary persistent inflammation due to activation of microglia, astrocytes, and infiltrated immune cells contribute to Alzheimer's disease (AD)-related neurodegeneration. The majority of evidence supports the neuroprotective effects of Treg cells in AD. In the early stages of AD, appropriate Treg cell activity is required for the induction of microglia and astrocyte phagocytic activity in order to clear A deposits and prevent neuroinflammation. Such neuroprotective impacts were in part attributed to the ability of Treg cells to suppress deleterious and/or boost beneficial functions of microglia/astrocytes. In the later stages of AD, an effective Treg cell activity needs to prevent neurotoxicity and neurodegeneration. Treg cells can exert preventive effects on Th1-, and Th17 cell-related pathologic responses, whilst potentiating Th2-mediated protective activity. The impaired Treg cell-related immunomodulatory mechanisms have been described in AD patients and in related animal models which can contribute to the onset and progression of AD. This review aimed to provide a comprehensive figure regarding the role of Treg cells in AD while highlighting potential therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Linfocitos T Reguladores , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides , Sistema Nervioso Central , Microglía
9.
Clin Exp Allergy ; 53(11): 1147-1161, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37641429

RESUMEN

Suppressor of cytokine signalling (SOCS) proteins bind to certain cytokine receptors, Janus kinases and signalling molecules to regulate signalling pathways, thus controlling immune and inflammatory responses. Dysregulated expression of various types of SOCS molecules was indicated in multiple types of allergic diseases. SOCS1, SOCS2, SOCS3, SOCS5, and cytokine-inducible SH2 domain protein (CISH) can differentially exert anti-allergic impacts through different mechanisms, such as suppressing Th2 cell development and activation, reducing eosinophilia, decreasing IgE production, repressing production of pro-allergic chemokines, promoting Treg cell differentiation and activation, suppressing Th17 cell differentiation and activation, increasing anti-allergic Th1 responses, inhibiting M2 macrophage polarization, modulating survival and development of mast cells, reducing pro-allergic activity of keratinocytes, and suppressing pulmonary fibrosis. Although some anti-allergic effects were attributed to SOCS3, it can perform pro-allergic impacts through several pathways, such as promoting Th2 cell development and activation, supporting eosinophilia, boosting pro-allergic activity of eosinophils, increasing IgE production, enhancing the expression of the pro-allergic chemokine receptor, reducing Treg cell differentiation, increasing pro-allergic Th9 responses, as well as supporting mucus secretion and collagen deposition. In this review, we discuss the contrasting roles of SOCS proteins in contexts of allergic disorders to provide new insights regarding the pathophysiology of these diseases and possibly explore SOCS proteins as potential therapeutic targets for alleviating allergies.


Asunto(s)
Antialérgicos , Eosinofilia , Hipersensibilidad , Humanos , Hipersensibilidad/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Citocinas/metabolismo , Inmunoglobulina E/metabolismo
10.
Parasite Immunol ; 45(8): e13000, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37338019

RESUMEN

Toll-like receptors (TLRs) and inflammasomes belong to the pattern recognition receptors (PRRs) of innate immunity identifying conserved compounds produced by pathogens or discharged by injured cells. Different cell subsets in the human urogenital system, such as epithelial cells and infiltrating leukocytes, express different kinds of TLRs (such as TLR2, TLR3, TLR4, TLR5 and TLR9) as well as inflammasomes (such as NLRP3, NLRC4 and AIM2). Various types of the Trichomonas vaginalis-derived components such as glycosyl-phosphatidylinositol (GPI), T. vaginalis virus (TVV), Lipophosphoglycan (LPG) and flagellin can be recognized by TLR2, TLR3, TLR4 and TLR5, respectively, leading to the production of proinflammatory cytokines and chemokines in the cervicovaginal mucosa. The T. vaginalis-induced inflammasomes can lead to pyroptosis as well as the release of IL-1ß and IL-18 promoting innate and adaptive immune responses. The PRR-mediated responses to T. vaginalis may contribute to the induction of protective immune responses, local inflammation, promotion of co-infections, or even the development of malignancies, for example, prostate cancer. The protective or pathogenic roles of the TLRs and inflammasomes during trichomoniasis are highlighted in this review. A better understanding of PRR-mediated responses provides invaluable insights to develop effective immunotherapeutic strategies against T. vaginalis infection.


Asunto(s)
Inflamasomas , Tricomoniasis , Masculino , Humanos , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Receptor Toll-Like 3 , Receptor Toll-Like 5 , Receptores Toll-Like
11.
Indian J Med Res ; 158(4): 432-438, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006346

RESUMEN

BACKGROUND OBJECTIVES: Semaphorins were initially characterized as axon guidance factors but were subsequently implicated in the regulation of immune responses, angiogenesis, organ formation and a variety of other physiological and developmental functions. Various semaphorins enhance or inhibit tumour progression through different mechanisms. The objective of this study was to assess the expression of various semaphorins and vascular endothelial growth factor (VEGF) gene transcripts as well as the serum level of Sema3A in individuals with laryngeal squamous cell carcinoma (LSCC). METHODS: Tissue expression of Sema3A, Sema3C, Sema4D, Sema6D and VEGF was determined in both tumour tissues and tissues around the tumour from 30 individuals with pathologically confirmed LSCC using quantitative real-time PCR. Furthermore, the serum level of Sema3A in these individuals was assessed using enzyme-linked immunosorbent assay. RESULTS: Sema3C gene transcript showed a significant increase (P=0.001), while Sema4D was observed with a significant decrease in tumour samples compared to non-tumoural tissues (P≤0.01). The expression of the Sema3C gene was found to be associated with the stage of LSCC tumour as it was statistically significant for tumours with stage IV (P<0.01). The serum level of Sema3A was not found to be significant between cases and controls. INTERPRETATION CONCLUSIONS: Increased expression of Sema3C but decreased expression of Sema4D in tumour tissue of LSCC may introduce these two growth factors as crucial mediators orchestrating tumour growth in individuals with LSCC. This result could open a new vision for the treatment of this malignancy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Semaforinas , Humanos , Semaforina-3A/genética , Semaforina-3A/metabolismo , Factor A de Crecimiento Endotelial Vascular , Carcinoma de Células Escamosas de Cabeza y Cuello , Semaforinas/genética , Semaforinas/metabolismo
12.
Cytokine ; 153: 155839, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276636

RESUMEN

The expression of programmed cell death protein-1 (PD-1) and its ligands- PD-L1 and PD-L2- on T cells and macrophages', respectively, increases in Leishmania infection. The PD-1/PD-L1 interaction induces T cell anergy, T cell apoptosis and exhaustion, diversion of T cells toward TH2 and T-reg cells but inhibits M1 macrophage activities by suppression of nitric oxide (NO) and reactive oxygen species (ROS) production. These changes exacerbate Leishmania infection. As PD-L1-deficient, but not PD-L2-deficient, mice were protected againstL. mexicanainfection, differential roles have been proposed for PD-L1 and PD-L2 in mouse models of leishmaniasis. Blockade of PD-1/PD-L1 interaction in various in vitro and Leishmania-infected mouse, hamster and dog models enhanced IFN-γ and NO production, reduced IL-10 and TGF-ß generation, promoted T cell proliferation and reduced parasite burden. Therefore, PD-1/PD-L1 blockade is being considered as a potential therapeutic strategy to restore protective immunity during leishmaniasis, particularly, in drug-resistant cases.


Asunto(s)
Leishmaniasis , Parásitos , Animales , Antígeno B7-H1/metabolismo , Perros , Leishmaniasis/tratamiento farmacológico , Ligandos , Ratones , Receptor de Muerte Celular Programada 1
13.
Bull World Health Organ ; 100(8): 474-483, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35923277

RESUMEN

Objective: To investigate the incidence of coronavirus disease 2019 (COVID-19) cases, hospitalizations and deaths in Iranians vaccinated with either AZD1222 Vaxzevria, CovIran® vaccine, SARS-CoV-2 Vaccine (Vero Cell), Inactivated (lnCoV) or Sputnik V. Methods: We enrolled individuals 18 years or older receiving their first COVID-19 vaccine dose between April 2021 and January 2022 in seven Iranian cities. Participants completed weekly follow-up surveys for 17 weeks (25 weeks for AZD1222) to report their COVID-19 status and hospitalization. We used Cox regression models to assess risk factors for contracting COVID-19, hospitalization and death. Findings: Of 89 783 participants enrolled, incidence rates per 1 000 000 person-days were: 528.2 (95% confidence interval, CI: 514.0-542.7) for contracting COVID-19; 55.8 (95% CI: 51.4-60.5) for hospitalization; and 4.1 (95% CI: 3.0-5.5) for death. Compared with SARS-CoV-2 Vaccine (Vero Cell), hazard ratios (HR) for contracting COVID-19 were: 0.70 (95% CI: 0.61-0.80) with AZD1222; 0.73 (95% CI: 0.62-0.86) with Sputnik V; and 0.73 (95% CI: 0.63-0.86) with CovIran®. For hospitalization and death, all vaccines provided similar protection 14 days after the second dose. History of COVID-19 protected against contracting COVID-19 again (HR: 0.76; 95% CI: 0.69-0.84). Diabetes and respiratory, cardiac and renal disease were associated with higher risks of contracting COVID-19 after vaccination. Conclusion: The rates of contracting COVID-19 after vaccination were relatively high. SARS-CoV-2 Vaccine (Vero Cell) provided lower protection against COVID-19 than other vaccines. People with comorbidities had higher risks of contracting COVID-19 and hospitalization and should be prioritized for preventive interventions.


Asunto(s)
COVID-19 , Vacunas , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Estudios de Cohortes , Hospitalización , Humanos , Irán/epidemiología , SARS-CoV-2 , Vacunación
14.
Indian J Med Res ; 155(3&4): 335-346, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36124508

RESUMEN

The utilization of the monoclonal antibodies (mAbs) as therapeutic agents is one of the most favourable fields in immunotherapy. The immunogenicity of mAbs is one of the major parameters that may restrict their therapeutic and diagnostic applications. Rituximab, a chimeric mAb against CD20, is attached to the B-cell membrane-linked CD20 and is used to treat some B-cell-related malignancies, a number of autoantibody-mediated autoimmune disorders and improvement of graft survival. The risk of anti-rituximab antibody (ARA) development and ARA-related adverse events are low in rituximab-treated patients with lymphoma. No important association was reported between the ARA positivity and drug levels, and drug efficacy in rituximab-treated patients with lymphoma. The patients with autoimmune disorders exhibit greater risk of ARA development and ARA-related adverse events. In autoimmune diseases, ARA positivity may have no significant impact on either the drug level or its efficacy, (i.e.), it may reduce drug levels without influencing drug efficacy and, vice versa, or may reduce both drug level as well as its efficacy. The characterization of the parameters affecting the production of ARA can be used to design strategies to reduce the immunogenicity of mAb and promote its efficacy in humans. In this review, the host and therapeutic programme-related parameters affecting the development of the ARA have been discussed to suggest novel insights to reduce ARA-associated adverse events and enhance the drug efficacy.


Asunto(s)
Antígenos CD20 , Enfermedades Autoinmunes , Anticuerpos Monoclonales/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Linfocitos B , Humanos , Rituximab/efectos adversos
15.
Immunopharmacol Immunotoxicol ; 44(5): 773-785, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35620857

RESUMEN

OBJECTIVE: Th9- and regulatory T (Treg) cells exert pro- and anti-allergic activity, respectively. Mesenchymal stem cell (MSC)-related immunomodulatory impacts can be enhanced by inflammatory cytokines. Here, the modulatory effects of IFN-γ/TNF-α-induced MSCs on Th9- and Treg cell-related parameters were investigated using an asthma model. METHODS: Allergic asthma was induced in BALB/c mice using sensitized and challenging with ovalbumin (OVA). The asthmatic groups were treated intraperitoneally with PBS, MSCs, IFN-γ-induced MSCs, TNF-α-induced MSCs and 'IFN-γ + TNF-α'-induced MSCs before the challenge phase. The mice were sacrificed 24 h after challenge. The serum IL-9 and IL-35 levels, as well as gene expression of IL-9, PU.1, IL-35-EBI3, and FOXP3 in the lung tissues were assessed using ELISA and real time-PCR, respectively. RESULTS: The differences of Th9 and Treg-related parameters were not significant between untreated asthmatic mice and those treated with non-induced MSCs. In comparison with untreated asthmatic group, treatment with IFN-γ-induced MSCs significantly reduced serum IL-9 levels, reduced lung expression of IL-9 and PU.1, while increasing serum IL-35 levels as well as lung expression of FOXP3; treatment with TNF-α-induced MSCs significantly reduced serum IL-9 levels as well as lung expression of IL-9, and treatment with 'IFN-γ + TNF-α'-induced MSCs, significantly modulated all investigated Th9 and Treg-related parameters. In comparison to mice treated with non-induced MSCs, serum IL-9 levels were remarkably decreased in mice treated with IFN-γ-induced and 'IFN-γ + TNF-α'-induced MSCs. CONCLUSIONS: IFN-γ-and 'IFN-γ + TNF-α' treated MSCs exerted almost comparable impacts, but were more efficient than TNF-α-exposed MSCs. Thus, IFN-γ alone can be sufficient to promote immunomodulatory effects of MSCs.


Asunto(s)
Antialérgicos , Asma , Células Madre Mesenquimatosas , Animales , Antialérgicos/farmacología , Asma/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Interferón gamma/metabolismo , Interleucina-9/metabolismo , Interleucina-9/farmacología , Interleucina-9/uso terapéutico , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/farmacología , Linfocitos T Reguladores , Factor de Necrosis Tumoral alfa/metabolismo
16.
Cytokine ; 147: 155321, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33039255

RESUMEN

Infection with the same species of Leishmania (L)donovani causes different manifestations including visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL), indicating that the host-related immunological parameters perform a decisive role in the pathogenesis of diseases. As PKDL is a reservoir of the parasite, a better understanding of the host immune responses is necessary to restrict the L. donovani transmission. The proper local production of Th1 cell-related cytokines (including IFN-γ, TNF-α and IL-12), Th17 cell-derived cytokines (such as IL-17A, IL-17F and IL-22), and CD8+ cytotoxic T lymphocyte (CTL)-derived IFN-γ are protective against PKDL. However, dominant production of regulatory CD4+ T cell-derived cytokines (such as IL-10 and TGF-ß), Th2 cell-derived cytokines (such as IL-4/IL-13), M2 macrophage-derived cytokines (such as IL-4 and IL-10), keratinocyte-derived IL-10, regulatory CD8+ T cell-derived IL-10, and dendritic cell-derived IL-10, IL-27 and IL-21 can contribute to the parasite persistence and PKDL development. Understanding of the T cell-related cytokine network within PKDL lesions gives rise to novel insights concerning the role of each cytokine in the protection or susceptibility to disease. Manipulation of the cytokine network can be considered as an interesting immunotherapeutic strategy for the treatment of L. donovani-mediated PKDL.


Asunto(s)
Citocinas/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Visceral/inmunología , Linfocitos T/inmunología , Animales , Humanos , Leishmania donovani/inmunología
17.
Microb Pathog ; 154: 104836, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33691172

RESUMEN

Hyper-inflammatory responses, lymphopenia, unbalanced immune responses, cytokine storm, large viral replication and massive cell death play fundamental roles in the pathogenesis of COVID-19. Extreme production of many kinds of pro-inflammatory cytokines and chemokines occur in severe COVID-19 that called cytokine storm. Signal transducer and activator of transcription-3 (STAT-3) present in the cytoplasm in an inactive form and can be stimulated by a vast range of cytokines, chemokines and growth factors. Thus, STAT-3 can participate in the induction of inflammatory responses during coronavirus infections. STAT-3 can also suppress anti-virus interferon response and induce unbalanced anti-virus adaptive immune response, through influencing Th17-, Th1-, Treg-, and B cell-mediated functions. Furthermore, STAT-3 can contribute to the M2 macrophage polarization, lung fibrosis and thrombosis. Moreover, STAT-3 may be directly targeted by some virus-derived protein and operate as a pro-viral or anti-viral element in a virus-specific process. Here, the possible contribution of STAT-3 to the pathogenesis of COVID-19 was explained, while providing potential approaches to target this transcription factor in an attempt for COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus , Síndrome de Liberación de Citoquinas , Citocinas/metabolismo , Humanos , SARS-CoV-2 , Factor de Transcripción STAT3
18.
Scand J Immunol ; 93(2): e12967, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32875598

RESUMEN

The lymphopenia as a major immunological abnormality occurs in the majority of severe COVID-19 patients, which is strongly associated with mortality rate. A low proportion of lymphocytes may express the main receptor for SARS-CoV-2, called angiotensin-converting enzyme 2 (ACE2). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can also use ACE2-independent pathways to enter lymphocytes. Both SARS-CoV-2- and immune-mediated mechanisms may contribute to the occurrence of lymphopenia through influencing the lymphocyte production, survival or tissue re-distribution. The metabolic and biochemical changes can also affect the production and survival of lymphocytes in COVID-19 patients. Lymphopenia can cause general immunosuppression and promote cytokine storm, both of them play an important role in the viral persistence, viral replication, multi-organ failure and eventually death. Here, a comprehensive view concerning the possible mechanisms that may lead to the lymphocyte reduction in COVID-19 patients is provided, while highlighting the potential intervention approaches to prevent lymphopenia.


Asunto(s)
COVID-19/inmunología , Linfopenia/inmunología , SARS-CoV-2/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Neumonía Viral/inmunología
19.
Scand J Immunol ; 93(2): e12959, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32797730

RESUMEN

Allergic airway disorders such as asthma and allergic rhinitis are mainly caused by inhaled allergen-induced improper activation and responses of immune and non-immune cells. One important response is the production of IL-27 by macrophages and dendritic cells (DCs) during the early stage of airway allergies. IL-27 exerts powerful modulatory influences on the cells of innate immunity [eg neutrophils, eosinophils, mast cells, monocytes, macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs), natural killer (NK) cells and NKT cells)] and adaptive immunity (eg Th1, Th2, Th9, Th17, regulatory T, CD8+ cytotoxic T and B cells). The IL-27-mediated signalling pathways may be modulated to attenuate asthma and allergic rhinitis. In this review, a comprehensive discussion concerning the roles carried out by IL-27 in asthma and allergic rhinitis was provided, while evidences are presented favouring the use of IL-27 in the treatment of airway allergies.


Asunto(s)
Factores Inmunológicos/inmunología , Interleucina-27/inmunología , Sistema Respiratorio/inmunología , Rinitis Alérgica/inmunología , Animales , Asma/inmunología , Células Dendríticas/inmunología , Humanos
20.
Parasite Immunol ; 43(9): e12870, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34028815

RESUMEN

Following inoculation of Leishmania, a protozoan parasite, into the skin of a mammal, the epidermal keratinocytes recognize the parasite and influence the local immune response that can give rise to different outcomes of leishmaniasis. The early keratinocyte-derived cytokines and keratinocytes-T cells interactions shape the anti-leishmanial immune responses that contribute to the resistance or susceptibility to leishmaniasis. The keratinocyte-derived cytokines can directly potentiate the leishmanicidal activity of monocytes and macrophages. As keratinocytes express MHC-II and enhance the expression of costimulatory molecules, these cells act as antigen-presenting cells (APCs) in cutaneous leishmaniasis (CL). Depending on the epidermal microenvironment, the keratinocytes induce various types of effector CD4+ T cells. Keratinocyte apoptosis and necrosis have been also implicated in ulceration in CL. Further, keratinocytes contribute to the healing of Leishmania-related cutaneous wounds. However, keratinocyte-derived IL-10 may play a key role in the development of post-kala-azar dermal leishmaniasis (PKDL). In this review, a comprehensive discussion regarding the multiple roles played by keratinocytes during leishmaniasis was provided, while highlighting novel insights concerning the immunological and pathological roles of these cells.


Asunto(s)
Leishmania donovani , Leishmania , Leishmaniasis Cutánea , Leishmaniasis Visceral , Animales , Queratinocitos , Piel
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda