Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L377-L392, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290992

RESUMEN

Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.


Asunto(s)
Asma , Células Caliciformes , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Pirrolidinas , Esfingosina/análogos & derivados , Sulfonas , Animales , Humanos , Ratones , Células Caliciformes/metabolismo , Ratones Endogámicos C57BL , Asma/patología , Epitelio/metabolismo , Factores de Transcripción/metabolismo , Metaplasia/metabolismo , Metaplasia/patología , Alérgenos , Metanol
2.
Cancer Cell Int ; 24(1): 250, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020410

RESUMEN

BACKGROUND: Pien Tze Huang (PZH), a traditional Chinese medicine formulation, is recognized for its therapeutic effect on colitis and colorectal cancer. However, its protective role and underlying mechanism in colitis-associated colorectal cancer (CAC) remain to be elucidated. METHODS: A CAC mouse model was established using AOM/DSS. Twenty mice were randomly divided into four groups (n = 5/group): Control, PZH, AOM/DSS, and AOM/DSS + PZH groups. Mice in the PZH and AOM/DSS + PZH group were orally administered PZH (250 mg/kg/d) from the first day of experiment, while the control and AOM/DSS group received an equivalent volume of distilled water. Parameters such as body weight, disease activity index (DAI), colon weight, colon length, colon histomorphology, intestinal tumor formation, serum concentrations of pro-inflammatory cytokines, proliferation and apoptosis in colon tissue were assessed. RNA sequencing was employed to identify the differentially expressed transcripts (DETs) in colonic tissues and related signaling pathways. Wnt/ß-Catenin Pathway-Related genes in colon tissue were detected by QPCR and immunohistochemistry (IHC). RESULTS: PZH significantly attenuated AOM/DSS-induced weight loss, DAI elevation, colonic weight gain, colon shortening, histological damage, and intestinal tumor formation in mice. PZH also notably decreased serum concentration of IL-6, IL-1ß, and TNF-α. Furthermore, PZH inhibited cell proliferation and promote apoptosis in tumor tissues. RNA-seq and KEGG analysis revealed key pathways influenced by PZH, including Wnt/ß-catenin signaling pathway. IHC staining confirmed that PZH suppressed the expression of ß-catenin, cyclin D1 and c-Myc in colonic tissues. CONCLUSIONS: PZH ameliorates AOM/DSS-induced CAC in mice by suppressing the activation of Wnt/ß-catenin signaling pathway.

3.
Pharm Biol ; 62(1): 607-620, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39034914

RESUMEN

CONTEXT: Ulcerative colitis has been clinically treated with Qing Hua Chang Yin (QHCY), a traditional Chinese medicine formula. However, its precise mechanisms in mitigating chronic colitis are largely uncharted. OBJECTIVE: To elucidate the therapeutic efficiency of QHCY on chronic colitis and explore its underlying molecular mechanisms. MATERIALS AND METHODS: A total ion chromatogram fingerprint of QHCY was analysed. Chronic colitis was induced in male C57BL/6 mice using 2% dextran sodium sulphate (DSS) over 49 days. Mice were divided into control, DSS, DSS + QHCY (0.8, 1.6 and 3.2 g/kg/d dose, respectively) and DSS + mesalazine (0.2 g/kg/d) groups (n = 6). Mice were intragastrically administered QHCY or mesalazine for 49 days. The changes of disease activity index (DAI), colon length, colon histomorphology and serum pro-inflammatory factors in mice were observed. RNA sequencing was utilized to identify the differentially expressed transcripts (DETs) in colonic tissues and the associated signalling pathways. The expression of endoplasmic reticulum (ER) stress-related protein and NF-κB signalling pathway-related proteins in colonic tissues was detected by immunohistochemistry staining. RESULTS: Forty-seven compounds were identified in QHCY. Compared with the DSS group, QHCY significantly improved symptoms of chronic colitis like DAI increase, weight loss, colon shortening and histological damage. It notably reduced serum levels of IL-6, IL-1ß and TNF-α. QHCY suppressed the activation of PERK-ATF4-CHOP pathway of ER stress and NF-κB signalling pathways in colonic tissues. DISCUSSION AND CONCLUSIONS: The findings in this study provide novel insights into the potential of QHCY in treating chronic colitis patients.


Asunto(s)
Factor de Transcripción Activador 4 , Sulfato de Dextran , Medicamentos Herbarios Chinos , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , FN-kappa B , Transducción de Señal , Factor de Transcripción CHOP , eIF-2 Quinasa , Animales , Masculino , Transducción de Señal/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Medicamentos Herbarios Chinos/farmacología , FN-kappa B/metabolismo , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción CHOP/metabolismo , Enfermedad Crónica , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/patología , Modelos Animales de Enfermedad , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Relación Dosis-Respuesta a Droga
4.
Am J Respir Cell Mol Biol ; 65(1): 70-80, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780653

RESUMEN

Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification, airway hyperreactivity, and pulmonary hypertension. In our BPD model, we have investigated the metabolism of the bronchodilator and pulmonary vasodilator GSNO (S-nitrosoglutathione). We have shown the GSNO catabolic enzyme encoded by adh5 (alcohol dehydrogenase-5), GSNO reductase, is epigenetically upregulated in hyperoxia. Here, we investigated the distribution of GSNO reductase expression in human BPD and created an animal model that recapitulates the human data. Blinded comparisons of GSNO reductase protein expression were performed in human lung tissues from infants and children with and without BPD. BPD phenotypes were evaluated in global (adh5-/-) and conditional smooth muscle (smooth muscle/adh5-/-) adh5 knockout mice. GSNO reductase was prominently expressed in the airways and vessels of human BPD subjects. Compared with controls, expression was greater in BPD smooth muscle, particularly in vascular smooth muscle (2.4-fold; P = 0.003). The BPD mouse model of neonatal hyperoxia caused significant alveolar simplification, airway hyperreactivity, and right ventricular and vessel hypertrophy. Global adh5-/- mice were protected from all three aspects of BPD, whereas smooth muscle/adh5-/- mice were only protected from pulmonary hypertensive changes. These data suggest adh5 is required for the development of BPD. Expression in the pulmonary vasculature is relevant to the pathophysiology of BPD-associated pulmonary hypertension. GSNO-mimetic agents or GSNO reductase inhibitors, both of which are currently in clinical trials for other conditions, could be considered for further study in BPD.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Displasia Broncopulmonar/metabolismo , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Alcohol Deshidrogenasa/genética , Animales , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Niño , Preescolar , Femenino , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Lactante , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología
5.
Pediatr Res ; 90(1): 52-57, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33122799

RESUMEN

BACKGROUND: Oxygen and continuous positive airway pressure (CPAP) are primary modes of respiratory support for preterm infants. Animal models, however, have demonstrated adverse unintended effects of hyperoxia and CPAP on lung development. We investigate the effects of combined neonatal hyperoxia and CPAP exposure on airway function and morphology in mice. METHODS: Newborn mice were exposed to hyperoxia (40% O2) 24 h/day for 7 consecutive days with or without daily (3 h/day) concomitant CPAP. Two weeks after CPAP and/or hyperoxia treatment ended, lungs were assessed for airway (AW) hyperreactivity and morphology. RESULTS: CPAP and hyperoxia exposure alone increased airway reactivity compared to untreated control mice. CPAP-induced airway hyperreactivity was associated with epithelial and smooth muscle proliferation. In contrast, combined CPAP and hyperoxia treatment no longer resulted in increased airway reactivity, which was associated with normalization of smooth muscle and epithelial proliferation to values similar to untreated mice. CONCLUSIONS: Our data suggest that the combination of CPAP and hyperoxia decreases the adverse consequences on airway remodeling of either intervention alone. The complex interaction between mechanical stretch (via CPAP) and hyperoxia exposure on development of immature airways has implications for the pathophysiology of airway disease in former preterm infants receiving non-invasive respiratory support. IMPACT: CPAP and mild hyperoxia exposure alone increase airway reactivity in the neonatal mouse model. In contrast, combined CPAP and hyperoxia no longer induce airway hyperreactivity. Combined CPAP and hyperoxia normalize smooth muscle and epithelial proliferation to control values. Interaction between CPAP-induced stretch and mild hyperoxia exposure on immature airways has important implications for airway pathophysiology in former preterm infants.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Hiperoxia/fisiopatología , Tráquea/fisiopatología , Animales , Animales Recién Nacidos , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo
6.
Am J Respir Cell Mol Biol ; 61(6): 765-775, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31596601

RESUMEN

S-nitrosothiols (SNOs) are endogenous signaling molecules that have numerous beneficial effects on the airway via cyclic guanosine monophosphate-dependent and -independent processes. Healthy human airways contain SNOs, but SNO levels are lower in the airways of patients with cystic fibrosis (CF). In this study, we examined the interaction between SNOs and the molecular cochaperone C-terminus Hsc70 interacting protein (CHIP), which is an E3 ubiquitin ligase that targets improperly folded CF transmembrane conductance regulator (CFTR) for subsequent degradation. Both CFBE41o- cells expressing either wild-type or F508del-CFTR and primary human bronchial epithelial cells express CHIP. Confocal microscopy and IP studies showed the cellular colocalization of CFTR and CHIP, and showed that S-nitrosoglutathione inhibits the CHIP-CFTR interaction. SNOs significantly reduced both the expression and activity of CHIP, leading to higher levels of both the mature and immature forms of F508del-CFTR. In fact, SNO inhibition of the function and expression of CHIP not only improved the maturation of CFTR but also increased CFTR's stability at the cell membrane. S-nitrosoglutathione-treated cells also had more S-nitrosylated CHIP and less ubiquitinated CFTR than cells that were not treated, suggesting that the S-nitrosylation of CHIP prevents the ubiquitination of CFTR by inhibiting CHIP's E3 ubiquitin ligase function. Furthermore, the exogenous SNOs S-nitrosoglutathione diethyl ester and S-nitro-N-acetylcysteine increased the expression of CFTR at the cell surface. After CHIP knockdown with siRNA duplexes specific for CHIP, F508del-CFTR expression increased at the cell surface. We conclude that SNOs effectively reduce CHIP-mediated degradation of CFTR, resulting in increased F508del-CFTR expression on airway epithelial cell surfaces. Together, these findings indicate that S-nitrosylation of CHIP is a novel mechanism of CFTR correction, and we anticipate that these insights will allow different SNOs to be optimized as agents for CF therapy.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Procesamiento Proteico-Postraduccional , S-Nitrosotioles/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aprotinina/farmacología , Células Cultivadas , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Leupeptinas/farmacología , Pliegue de Proteína , Estabilidad Proteica , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/farmacología , S-Nitrosoglutatión/farmacología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
7.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G868-G878, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118317

RESUMEN

Gastrointestinal dysfunction in cystic fibrosis (CF) is a prominent source of pain among patients with CF. Linaclotide, a guanylate cyclase C (GCC) receptor agonist, is a US Food and Drug Administration-approved drug prescribed for chronic constipation but has not been widely used in CF, as the cystic fibrosis transmembrane conductance regulator (CFTR) is the main mechanism of action. However, anecdotal clinical evidence suggests that linaclotide may be effective for treating some gastrointestinal symptoms in CF. The goal of this study was to determine the effectiveness and mechanism of linaclotide in treating CF gastrointestinal disorders using CF mouse models. Intestinal transit, chloride secretion, and intestinal lumen fluidity were assessed in wild-type and CF mouse models in response to linaclotide. CFTR and sodium/hydrogen exchanger 3 (NHE3) response to linaclotide was also evaluated. Linaclotide treatment improved intestinal transit in mice carrying either F508del or null Cftr mutations but did not induce detectable Cl- secretion. Linaclotide increased fluid retention and fluidity of CF intestinal contents, suggesting inhibition of fluid absorption. Targeted inhibition of sodium absorption by the NHE3 inhibitor tenapanor produced improvements in gastrointestinal transit similar to those produced by linaclotide treatment, suggesting that inhibition of fluid absorption by linaclotide contributes to improved gastrointestinal transit in CF. Our results demonstrate that linaclotide improves gastrointestinal transit in CF mouse models by increasing luminal fluidity through inhibiting NHE3-mediated sodium absorption. Further studies are necessary to assess whether linaclotide could improve CF intestinal pathologies in patients. GCC signaling and NHE3 inhibition may be therapeutic targets for CF intestinal manifestations. NEW & NOTEWORTHY Linaclotide's primary mechanism of action in alleviating chronic constipation is through cystic fibrosis transmembrane conductance regulator (CFTR), negating its use in patients with cystic fibrosis (CF). For the first time, our findings suggest that in the absence of CFTR, linaclotide can improve fluidity of the intestinal lumen through the inhibition of sodium/hydrogen exchanger 3. These findings suggest that linaclotide could improve CF intestinal pathologies in patients.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Tránsito Gastrointestinal , Intestinos/efectos de los fármacos , Péptidos/farmacología , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Animales , Células CACO-2 , Fibrosis Quística/metabolismo , Fibrosis Quística/fisiopatología , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Intestinos/fisiología , Ratones , Ratones Endogámicos C57BL , Péptidos/uso terapéutico
8.
Pediatr Res ; 81(4): 565-571, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27842056

RESUMEN

BACKGROUND: Premature infants are at increased risk for wheezing disorders. Clinically, these neonates experience recurrent episodes of apnea and desaturation often treated by increasing the fraction of inspired oxygen (FIO2). We developed a novel paradigm of neonatal intermittent hypoxia with subsequent hyperoxia overshoots (CIHO/E) and hypothesized that CIHO/E elicits long-term changes on pulmonary mechanics in mice. METHODS: Neonatal C57BL/6 mice received CIHO/E, which consisted of 10% O2 (1 min) followed by a transient exposure to 50% FIO2, on 10-min repeating cycles 24 h/d from birth to P7. Baseline respiratory mechanics, methacholine challenge, RT-PCR for pro and antioxidants, radial alveolar counts, and airway smooth muscle actin were assessed at P21 after 2-wk room air recovery. Control groups were mice exposed to normoxia, chronic intermittent hyperoxia (CIHE), and chronic intermittent hypoxia (CIHO). RESULTS: CIHO/E and CIHE increased airway resistance at higher doses of methacholine and decreased baseline compliance compared with normoxia mice. Lung mRNA for NOX2 was increased by CIHO/E. Radial alveolar counts and airway smooth muscle actin was not different between groups. CONCLUSION: Neonatal intermittent hypoxia/hyperoxia exposure results in long-term changes in respiratory mechanics. We speculate that recurrent desaturation with hyperoxia overshoot may increase oxidative stress and contribute to wheezing in former preterm infants.


Asunto(s)
Hiperoxia/patología , Hipoxia/patología , Mecánica Respiratoria , Sistema Respiratorio/fisiopatología , Animales , Animales Recién Nacidos , Antioxidantes/química , Peso Corporal , Displasia Broncopulmonar/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Cloruro de Metacolina/química , Ratones , Ratones Endogámicos C57BL , Oxidantes/química , Estrés Oxidativo , Oxígeno/química , Fenotipo , Alveolos Pulmonares/metabolismo , Recurrencia , Respiración , Factores de Tiempo
9.
Am J Physiol Lung Cell Mol Physiol ; 307(4): L295-301, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951774

RESUMEN

Wheezing is a major long-term respiratory morbidity in preterm infants with and without bronchopulmonary dysplasia. We hypothesized that mild vs. severe hyperoxic exposure in neonatal mice differentially affects airway smooth muscle hypertrophy and resultant airway reactivity. Newborn mice were exposed to 7 days of mild (40% oxygen) or severe (70% oxygen) hyperoxia vs. room air controls. Respiratory system resistance (Rrs), compliance (Crs), and airway reactivity were measured 14 days after oxygen exposure ended under ketamine/xylazine anesthesia. Baseline Rrs increased and Crs decreased in both treatment groups. Methacholine challenge dose dependently increased Rrs and decreased Crs in 40% oxygen-exposed mice, whereas Rrs and Crs responses were similar between 70% oxygen-exposed and normoxic controls. Airway smooth muscle thickness was increased in 40%- but not 70%-exposed mice, whereas collagen increased and both alveolar number and radial alveolar counts decreased after 40% and 70% oxygen. These data indicate that severity of hyperoxia may differentially affect structural and functional changes in the developing mouse airway that contribute to longer-term hyperreactivity. These findings may be important to our understanding of the complex role of neonatal supplemental oxygen therapy in postnatal development of airway responsiveness.


Asunto(s)
Hiperoxia/fisiopatología , Oxígeno/toxicidad , Sistema Respiratorio/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/fisiopatología , Colágeno/metabolismo , Femenino , Rendimiento Pulmonar/efectos de los fármacos , Masculino , Cloruro de Metacolina , Ratones , Sistema Respiratorio/fisiopatología
10.
Lab Anim ; 57(6): 611-622, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37382374

RESUMEN

The laboratory mouse is used extensively for human disease modeling and preclinical therapeutic testing for efficacy, biodistribution, and toxicity. The variety of murine models available, and the ability to create new ones, eclipses all other species, but the size of mice and their organs create challenges for many in vivo studies. For pulmonary research, improved methods to access murine airways and lungs, and track substances administered to them, would be desirable. A nonsurgical endoscopic system with a camera, effectively a bronchoscope, coupled with a cryoimaging fluorescence microscopy technique to view the lungs in 3D, is described here that allows visualization of the procedure, including the anatomical location at which substances are instilled and fluorescence detection of those substances. We have applied it to bacterial infection studies to characterize better and optimize a chronic lung infection murine model in which we instill bacteria-laden agarose beads into the airways and lungs to extend the duration of the infection and inflammation. The use of the endoscope as guidance for placing a catheter into the airways is simple and quick, requiring only momentary sedation, and reduces post-procedural mortality compared with our previous instillation method that includes a trans-tracheal surgery. The endoscopic method improves speed and precision of delivery while reducing the stress on animals and the number of animals generated and used for experiments.


Asunto(s)
Broncoscopía , Pulmón , Humanos , Animales , Ratones , Distribución Tisular , Pulmón/microbiología
11.
Front Pharmacol ; 13: 880878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662702

RESUMEN

Management of acute respiratory distress involves O2 supplementation, which is lifesaving, but causes severe hyperoxic acute lung injury (HALI). NADPH oxidase (NOX) could be a major source of reactive oxygen species (ROS) in hyperoxia (HO). Epithelial cell death is a crucial step in the development of many lung diseases. Alveolar type II (AT2) cells are the metabolically active epithelial cells of alveoli that serve as a source of AT1 cells following lung injury. The aim of this study was to determine the possible role of AT2 epithelial cell NOX4 in epithelial cell death from HALI. Wild type (WT), Nox4 fl/fl (control), and Nox4 -/- Spc-Cre mice were exposed to room air (NO) or 95% O2 (HO) to investigate the structural and functional changes in the lung. C57BL/6J WT animals subjected to HO showed increased expression of lung NOX4 compared to NO. Significant HALI, increased bronchoalveolar lavage cell counts, increased protein levels, elevated proinflammatory cytokines and increased AT2 cell death seen in hyperoxic Nox4 fl/fl control mice were attenuated in HO-exposed Nox4 -/- Spc-Cre mice. HO-induced expression of NOX4 in MLE cells resulted in increased mitochondrial (mt) superoxide production and cell apoptosis, which was reduced in NOX4 siRNA silenced cells. This study demonstrates a novel role for epithelial cell NOX4 in accelerating lung epithelial cell apoptosis from HALI. Deletion of the Nox4 gene in AT2 cells or silencing NOX4 in lung epithelial cells protected the lungs from severe HALI with reduced apoptosis and decreased mt ROS production in HO. These results suggest NOX4 as a potential target for the treatment of HALI.

12.
Cell Biochem Biophys ; 79(3): 561-573, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34176100

RESUMEN

INTRODUCTION: We have earlier shown that hyperoxia (HO)-induced sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling contribute to bronchopulmonary dysplasia (BPD). S1P acts through G protein-coupled receptors, S1P1 through S1P5. Further, we noted that heterozygous deletion of S1pr1 ameliorated the HO-induced BPD in the murine model. The mechanism by which S1P1 signaling contributes to HO-induced BPD was explored. METHODS: S1pr1+/+ and S1pr1+/- mice pups were exposed to either room air (RA) or HO (75% oxygen) for 7 days from PN 1-7. Lung injury and alveolar simplification was evaluated. Lung protein expression was determined by Western blotting and immunohistochemistry (IHC). In vitro experiments were performed using human lung microvascular endothelial cells (HLMVECs) with S1P1 inhibitor, NIBR0213 to interrogate the S1P1 signaling pathway. RESULTS: HO increased the expression of S1pr1 gene as well as S1P1 protein in both neonatal lungs and HLMVECs. The S1pr1+/- neonatal mice showed significant protection against HO-induced BPD which was accompanied by reduced inflammation markers in the bronchoalveolar lavage fluid. HO-induced reduction in ANG-1, TIE-2, and VEGF was rescued in S1pr1+/- mouse, accompanied by an improvement in the number of arterioles in the lung. HLMVECs exposed to HO increased the expression of KLF-2 accompanied by reduced expression of TIE-2, which was reversed with S1P1 inhibition. CONCLUSION: HO induces S1P1 followed by reduced expression of angiogenic factors. Reduction of S1P1 signaling restores ANG-1/ TIE-2 signaling leading to improved angiogenesis and alveolarization thus protecting against HO-induced neonatal lung injury.


Asunto(s)
Lisofosfolípidos , Esfingosina/análogos & derivados
13.
Antioxidants (Basel) ; 10(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34679661

RESUMEN

Thiol-NO adducts such as S-nitrosoglutathione (GSNO) are endogenous bronchodilators in human airways. Decreased airway S-nitrosothiol concentrations are associated with asthma. Nitric oxide (NO), a breakdown product of GSNO, is measured in exhaled breath as a biomarker in asthma; an elevated fraction of expired NO (FENO) is associated with asthmatic airway inflammation. We hypothesized that FENO could reflect airway S-nitrosothiol concentrations. To test this hypothesis, we first studied the relationship between mixed expired NO and airway S-nitrosothiols in patients endotracheally intubated for respiratory failure. The inverse (Lineweaver-Burke type) relationship suggested that expired NO could reflect the rate of pulmonary S-nitrosothiol breakdown. We thus studied NO evolution from the lungs of mice (GSNO reductase -/-) unable reductively to catabolize GSNO. More NO was produced from GSNO in the -/- compared to wild type lungs. Finally, we formally tested the hypothesis that airway GSNO increases FENO using an inhalational challenge model in normal human subjects. FENO increased in all subjects tested, with a median t1/2 of 32.0 min. Taken together, these data demonstrate that FENO reports, at least in part, GSNO breakdown in the lungs. Unlike GSNO, NO is not present in the lungs in physiologically relevant concentrations. However, FENO following a GSNO challenge could be a non-invasive test for airway GSNO catabolism.

14.
FASEB J ; 21(8): 1788-800, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17327359

RESUMEN

Hepatic ischemia-reperfusion (I/R) injury continues to be a fatal complication that can follow liver surgery or transplantation. We have investigated the involvement of the endocannabinoid system in hepatic I/R injury using an in vivo mouse model. Here we report that I/R triggers several-fold increases in the hepatic levels of the endocannabinoids anandamide and 2-arachidonoylglycerol, which originate from hepatocytes, Kupffer, and endothelial cells. The I/R-induced increased tissue endocannabinoid levels positively correlate with the degree of hepatic damage and serum TNF-alpha, MIP-1alpha, and MIP-2 levels. Furthermore, a brief exposure of hepatocytes to various oxidants (H2O2 and peroxynitrite) or inflammatory stimuli (endotoxin and TNF-alpha) also increases endocannabinoid levels. Activation of CB2 cannabinoid receptors by JWH133 protects against I/R damage by decreasing inflammatory cell infiltration, tissue and serum TNF-alpha, MIP-1alpha and MIP-2 levels, tissue lipid peroxidation, and expression of adhesion molecule ICAM-1 in vivo. JWH133 also attenuates the TNF-alpha-induced ICAM-1 and VCAM-1 expression in human liver sinusoidal endothelial cells (HLSECs) and the adhesion of human neutrophils to HLSECs in vitro. Consistent with the protective role of CB2 receptor activation, CB2-/- mice develop increased I/R-induced tissue damage and proinflammatory phenotype. These findings suggest that oxidative/nitrosative stress and inflammatory stimuli may trigger endocannabinoid production, and indicate that targeting CB2 cannabinoid receptors may represent a novel protective strategy against I/R injury. We also demonstrate that CB2-/- mice have a normal hemodynamic profile.


Asunto(s)
Hepatopatías/patología , Receptor Cannabinoide CB2/fisiología , Daño por Reperfusión , Animales , Ácidos Araquidónicos/análisis , Moduladores de Receptores de Cannabinoides/análisis , Moduladores de Receptores de Cannabinoides/biosíntesis , Modelos Animales de Enfermedad , Endocannabinoides , Glicéridos/análisis , Humanos , Inflamación , Hígado/química , Hepatopatías/metabolismo , Ratones , Ratones Noqueados , Estrés Oxidativo , Alcamidas Poliinsaturadas/análisis , Daño por Reperfusión/etiología , Regulación hacia Arriba
15.
Brain Res ; 1071(1): 42-53, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16413509

RESUMEN

During early development, adenosine contributes to the occurrence of respiratory depression and recurrent apneas. Recent physiological studies indicate that GABAergic mechanisms may be involved in this inhibitory action of adenosine, via their A(2A) receptors. In the present study, in situ hybridization with ribonucleotide probes for A(2A) receptor (A(2A)R) mRNA was combined with the immunolabeling technique for parvalbumin and transneuronal retrograde tracing method using green fluorescent protein expressing pseudorabies virus (GFP-PRV) to (1) characterize age-dependent changes in the expression of adenosine A(2A)Rs mRNA in brain stem regions where GABAergic neurons are located; (2) determine whether GABA-containing neurons express A(2A)R mRNA traits, and (3) identify whether bulbospinal GABAergic neurons projecting to phrenic nuclei contain A(2A)R mRNA. Results revealed expression of A(2A) receptors in regions of medulla oblongata containing GABAergic neurons, namely in the ventral aspect of the medulla, within the Bötzinger region and caudal to it, the gigantocellular reticular nucleus, midline neurons and the caudal ventrolateral medulla oblongata. Furthermore, a subpopulation of identified GABAergic neurons, projecting to the phrenic motor nuclei, possess A(2A)R mRNA. It is concluded that adenosine A(2A)Rs expressed by GABAergic neurons are likely to play a role in mediating adenosine-induced respiratory depression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Bulbo Raquídeo/citología , Neuronas/metabolismo , Receptores de Adenosina A2/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Factores de Edad , Animales , Northern Blotting/métodos , Recuento de Células/métodos , Diafragma/inervación , Diafragma/metabolismo , Diafragma/virología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Herpesvirus Suido 1/fisiología , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Bulbo Raquídeo/crecimiento & desarrollo , Modelos Neurológicos , Vías Nerviosas/metabolismo , Vías Nerviosas/virología , Parvalbúminas/genética , Parvalbúminas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Adenosina A2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Estadísticas no Paramétricas
16.
Neonatology ; 109(1): 6-13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26394387

RESUMEN

BACKGROUND: Continuous positive airway pressure (CPAP) and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia (BPD), the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP in the first week of life on later respiratory system mechanics. OBJECTIVE: We wanted to test the hypothesis that daily CPAP in a newborn-mouse model of BPD improves longer-term respiratory mechanics. METHODS: Mouse pups from C57BL/6 pregnant dams were exposed to room air (RA) or hyperoxia (50% O2, 24 h/day) for the first postnatal week with or without exposure to daily CPAP (6 cm H2O, 3 h/day). Respiratory system resistance (Rrs) and compliance (Crs) were measured following a subsequent 2-week period of RA recovery. Additional measurements included radial alveolar and macrophage counts. RESULTS: Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization and increased macrophage counts at 3 weeks when compared to RA-treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization and decreased lung macrophage infiltration in the hyperoxia-exposed pups. CONCLUSIONS: We have demonstrated that daily CPAP had a longer-term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic lung injury in newborns.


Asunto(s)
Displasia Broncopulmonar/terapia , Presión de las Vías Aéreas Positiva Contínua , Hiperoxia/complicaciones , Lesión Pulmonar/terapia , Macrófagos/patología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Oxígeno/efectos adversos , Pruebas de Función Respiratoria
17.
Brain Res ; 1044(2): 133-43, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15885212

RESUMEN

Recent evidence indicates that brain-derived neurotrophic factor (BDNF) is present in neurons and may affect neurotransmitter release, cell excitability, and synaptic plasticity via activation of tyrosine kinase B (TrkB) receptors. However, whether airway-related vagal preganglionic neurons (AVPNs) produce BDNF and contain TrkB receptors is not known. Hence, in ferrets, we examined BDNF and TrkB receptor expression in identified AVPNs using in situ hybridization and immunohistochemistry. BDNF protein levels were measured within the rostral nucleus ambiguus (rNA) region by ELISA. We observed that the subpopulation of AVPNs, identified by neuroanatomical tract tracing, within the rNA region express BDNF mRNA, BDNF protein, as well as TrkB receptor. In addition, brain tissue from the rNA region contained measurable amounts of BDNF that were comparable to the hippocampal region of the brain. These data indicate, for the first time, that the BDNF-TrkB system is expressed by AVPNs and may play a significant role in regulating cholinergic outflow to the airways.


Asunto(s)
Fibras Autónomas Preganglionares/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Receptor trkB/metabolismo , Tráquea/inervación , Nervio Vago , Animales , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Recuento de Células , Toxina del Cólera/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Hurones , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Masculino , Redes Neurales de la Computación , Receptor trkB/genética , Tráquea/metabolismo
18.
Neonatology ; 108(1): 65-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26021677

RESUMEN

BACKGROUND: Wheezing disorders are prominent in former preterm infants beyond the neonatal period. OBJECTIVES: We used a neonatal mouse model to investigate the time course of airway hyperreactivity in response to mild (40% oxygen) or severe (70% oxygen) neonatal hyperoxia. METHODS: After hyperoxic exposure during the first week of postnatal life, we measured changes in airway reactivity using the in vitro living lung slice preparation at the end of exposure [postnatal day 8 (P8)] and 2 weeks later (P21). This was accompanied by measures of smooth muscle actin, myosin light chain (MLC) and alveolar morphology. RESULTS: Neither mild nor severe hyperoxia exposure affected airway reactivity to methacholine at P8 compared to normoxic controls. In contrast, airway reactivity was enhanced at P21 in mice exposed to mild (but not severe) hyperoxia, 2 weeks after exposure ended. This was associated with increased airway α-smooth muscle actin expression at P21 after 40% oxygen exposure without a significant increase in MLC. Alveolar morphology via radial alveolar counts was comparably diminished by both 40 and 70% oxygen at both P8 and P21. CONCLUSIONS: These data demonstrate that early mild hyperoxia exposure causes a delayed augmentation of airway reactivity, suggesting a long-term alteration in the trajectory of airway smooth muscle development and consistent with resultant symptomatology.


Asunto(s)
Hiperreactividad Bronquial/fisiopatología , Pulmón/fisiopatología , Músculo Liso/patología , Oxígeno/toxicidad , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
19.
Respir Physiol Neurobiol ; 141(1): 21-34, 2004 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-15234673

RESUMEN

In the present study, we determined whether alpha-7 subunit containing nicotinic acetylcholine receptors (nAChRs) are expressed by neurons within the pre-Botzinger complex (pre-BotC), bulbospinal, and phrenic motor nuclei in the rat. alpha-7 Immunohistochemistry combined with cholera toxin B (CTB), a retrograde tracer was used to detect expression of alpha-7 nAChRs by phrenic motor and bulbospinal neurons. Neurokinin-1 receptor immunoreactivity was used as a marker for pre-BotC neurons. Of the CTB-positive neurons in the phrenic nuclei, 60% exhibited immunoreactivity for alpha-7 nAChRs. Of the bulbospinal neurons in the paramedian reticular nuclei (PMn), gigantocellular nuclei (Gi), raphe nuclei, rostral ventrolateral medulla (RVLM) and nucleus tractus solitarius, 20-50% were found to express alpha-7 nAChR immunoreactivity. Of the peudorabies virus (PRV) labeled bulbospinal neurons in PMn, Gi, raphe and RVLM, 9-12% co-expressed alpha-7 nAChRs. Immunoreactivity for alpha-7 nAChRs was also detected in 57% of the neurokinin-1 receptor containing neurons presumed to reside in pre-BotC. These findings suggest that nicotinic cholinergic regulation of the chest wall pumping muscles may occur at multiple levels of the central nervous system.


Asunto(s)
Tronco Encefálico/metabolismo , Diafragma/fisiología , Inhalación/fisiología , Neuronas Motoras/metabolismo , Receptores Nicotínicos/metabolismo , Médula Espinal/metabolismo , Animales , Tronco Encefálico/citología , Inmunohistoquímica , Masculino , Nervio Frénico/citología , Nervio Frénico/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/metabolismo , Músculos Respiratorios/fisiología , Sistema Respiratorio/metabolismo , Médula Espinal/citología , Distribución Tisular , Receptor Nicotínico de Acetilcolina alfa 7
20.
Neonatology ; 106(3): 235-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25011471

RESUMEN

BACKGROUND: Although caffeine enhances respiratory control and decreases the need for mechanical ventilation and resultant bronchopulmonary dysplasia, it may also have anti-inflammatory properties in protecting lung function. OBJECTIVE: We hypothesized that caffeine improves respiratory function via an anti-inflammatory effect in lungs of a lipopolysaccharide (LPS)-induced pro-inflammatory amnionitis rat pup model. METHODS: Caffeine was given orally (10 mg/kg/day) from postnatal day (p)1 to p14 to pups exposed to intra-amniotic LPS or normal saline. Expression of IL-1ß was assessed in lung homogenates at p8 and p14, and respiratory system resistance (Rrs) and compliance (Crs) as well as CD68 cell counts and radial alveolar counts were assessed at p8. RESULTS: In LPS-exposed rats, IL-1ß and CD68 cell counts both increased at p8 compared to normal saline controls. These increases in pro-inflammatory markers were no longer present in caffeine-treated LPS-exposed pups. Rrs was higher in LPS-exposed pups (4.7 ± 0.9 cm H2O/ml·s) at p8 versus controls (1.6 ± 0.3 cm H2O/ml·s, p < 0.01). LPS-exposed pups no longer exhibited a significant increase in Rrs (2.8 ± 0.5 cm H2O/ml·s) after caffeine. Crs did not differ significantly between groups, although radial alveolar counts were lower in both groups of LPS-exposed pups. CONCLUSIONS: Caffeine promotes anti-inflammatory effects in the immature lung of prenatal LPS-exposed rat pups associated with improvement of Rrs, suggesting a protective effect of caffeine on respiratory function via an anti-inflammatory mechanism.


Asunto(s)
Antiinflamatorios/farmacología , Cafeína/farmacología , Corioamnionitis , Pulmón/efectos de los fármacos , Animales , Animales Recién Nacidos , Corioamnionitis/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Lipopolisacáridos , Pulmón/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda