Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Transl Med ; 19(1): 164, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888147

RESUMEN

BACKGROUND: The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY: Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION: Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Exosomas , Trasplante de Células Madre Mesenquimatosas , Humanos , SARS-CoV-2
2.
Front Immunol ; 14: 1099459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969187

RESUMEN

Introduction: Adipocytes in the tumour microenvironment are highly dynamic cells that have an established role in tumour progression, but their impact on anti-cancer therapy resistance is becoming increasingly difficult to overlook. Methods: We investigated the role of adipose tissue and adipocytes in response to oncolytic virus (OV) therapy in adipose-rich tumours such as breast and ovarian neoplasms. Results: We show that secreted products in adipocyte-conditioned medium significantly impairs productive virus infection and OV-driven cell death. This effect was not due to the direct neutralization of virions or inhibition of OV entry into host cells. Instead, further investigation of adipocyte secreted factors demonstrated that adipocyte-mediated OV resistance is primarily a lipid-driven phenomenon. When lipid moieties are depleted from the adipocyte-conditioned medium, cancer cells are re-sensitized to OV-mediated destruction. We further demonstrated that blocking fatty acid uptake by cancer cells, in a combinatorial strategy with virotherapy, has clinical translational potential to overcome adipocyte-mediated OV resistance. Discussion: Our findings indicate that while adipocyte secreted factors can impede OV infection, the impairment of OV treatment efficacy can be overcome by modulating lipid flux in the tumour milieu.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Ováricas , Humanos , Femenino , Microambiente Tumoral , Medios de Cultivo Condicionados , Virus Oncolíticos/fisiología , Neoplasias Ováricas/terapia , Lípidos
3.
Front Microbiol ; 12: 758948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858370

RESUMEN

Despite significant efforts, there are currently no approved treatments for COVID-19. However, biotechnological approaches appear to be promising in the treatment of the disease. Accordingly, nucleic acid-based treatments including aptamers and siRNAs are candidates that might be effective in COVID-19 treatment. Aptamers can hamper entry and replication stages of the SARS-CoV-2 infection, while siRNAs can cleave the viral genomic and subgenomic RNAs to inhibit the viral life cycle and reduce viral loads. As a conjugated molecule, aptamer-siRNA chimeras have proven to be dual-functioning antiviral therapy, acting both as virus-neutralizing and replication-interfering agents as well as being a siRNA targeted delivery approach. Previous successful applications of these compounds against various stages of the pathogenesis of diseases and viral infections, besides their advantages over other alternatives, might provide sufficient rationale for the application of these nucleic acid-based drugs against the SARS-CoV-2. However, none of them are devoid of limitations. Here, the literature was reviewed to assess the plausibility of using aptamers, siRNAs, and aptamer-siRNA chimeras against the SARS-CoV-2 based on their previously established effectiveness, and discussing challenges lie in applying these molecules.

4.
Neurotox Res ; 39(5): 1613-1629, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34169404

RESUMEN

Aside from the respiratory distress as the predominant clinical presentation of SARS-CoV-2 infection, various neurological complications have been reported with the infection during the ongoing pandemic, some of which cause serious morbidity and mortality. Herein, we gather the latest anatomical evidence of the virus's presence within the central nervous system. We then delve into the possible SARS-CoV-2 entry routes into the neurological tissues, with the hematogenous and the neuronal routes as the two utmost passage routes into the nervous system. We then give a comprehensive review of the neurological manifestations of the SARS-CoV-2 invasion in both the central and peripheral nervous system and its underlying pathophysiology via investigating large studies in the field and case reports in cases of study scarcity.


Asunto(s)
COVID-19/complicaciones , COVID-19/fisiopatología , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/fisiopatología , COVID-19/virología , Sistema Nervioso Central/virología , Humanos , Enfermedades del Sistema Nervioso/virología , Sistema Nervioso Periférico/virología
5.
3 Biotech ; 11(2): 56, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33489675

RESUMEN

Despite its convenience and precision, CRISPR-based gene editing approaches still suffer from off-target effects and low efficiencies, which are partially rooted in Cas9, the nuclease component of the CRISPR/Cas9 system. In this study, we showed how mouse genome editing efficiency can be improved by constitutive and inheritable expression of Cas9 nuclease. For this goal, a transgenic mouse line expressing the Cas9 protein (Cas9-mouse) was generated. For in vitro assessment of gene editing efficiency, the Cas9-mice were crossed with the EGFP-mice to obtain mouse embryonic fibroblasts (MEF) expressing both EGFP and Cas9 (MEFCas9-EGFP). Transfection of these cells with in vitro transcribed (IVT) EGFP sgRNA or phU6-EGFPsgRNA plasmid led to robust decrease of Mean Fluorescent Intensity (MFI) to 8500 ± 1025 a.u. and 13,200 ± 1006 a.u. respectively. However, in the control group, in which the MEFEGFP cells were transfected with a pX330-EGFPsgRNA plasmid, the measured MFI was 16,800 ± 2254 a.u. For in vivo assessment, the Cas9-zygotes at two pronuclei stage (2PN) were microinjected with a phU6-HhexsgRNA vector and the gene mutation efficiency was compared with the wild-type (WT) zygotes microinjected with a pX330-HhexsgRNA plasmid. The analysis of born mice showed that while the injection of Cas9-zygotes resulted in 43.75% Hhex gene mutated mice, it was just 15.79% for the WT zygotes. In conclusion, the inheritable and constitutive expression of Cas9 in mice provides an efficient platform for gene editing, which can facilitate the production of genetically-modified cells and animals.

6.
Iran Biomed J ; 25(4): 255-64, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33992037

RESUMEN

Background: The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant proteins, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Loss of supression (Los1) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which its deletion extends replicative lifespan. Herein, a los1-deficient strain of P. pastoris was generated and characterized. Methods: A gene disruption cassette was prepared and transformed into an anti-CD22-expressing strain of P. pastoris. A δ los1 mutant was isolated and confirmed. The drug sensitivity of the mutant was also assessed. The growth pattern and the level of anti-CD22 single-chain variable fragment (scFv) expression were compared between the parent and mutant strains. Resuults: The los1 homologue was found to be a non-essential gene in P. pastoris. Furthermore, the susceptibility of los1 deletion strain to protein synthesis inhibitors was altered. This strain showed an approximately 1.85-fold increase in the extracellular level of anti-CD22 scFv (p < 0.05). The maximum concentrations of total proteins secreted by δ los1 and parent strains were 125 mg/L and 68 mg/L, respectively. Conclusion: The presented data suggest that the targeted disruption of los1 homologue in P. pastoris can result in a higher expression level of our target protein. Findings of this study may improve the current strategies used in optimizing the productivity of recombinant P. pastoris strains.


Asunto(s)
Eliminación de Gen , Marcación de Gen/métodos , Proteínas de Complejo Poro Nuclear/genética , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Supervivencia Celular/fisiología , Proteínas de Complejo Poro Nuclear/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores
7.
ACS Nanosci Au ; 1(1): 15-37, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37579261

RESUMEN

Luciferase-based biosensors have a wide range of applications and assay formats, including their relatively recent use in the study of viruses. Split luciferase, bioluminescence resonance energy transfer, circularly permuted luciferase, cyclic luciferase, and dual luciferase systems have all been used to interrogate the structure and function of prominent viruses infecting humans, animals, and plants. The utility of these assays is demonstrated by numerous studies which have not only successfully characterized interactions between viral and host cell proteins but that have also used these systems to identify viral inhibitors. In the present COVID-19 pandemic, luciferase-based biosensors are already playing a critical role in the study of the culprit virus SARS-CoV-2 as well as in the development of serological assays and drug development via high-throughput screening. In this review paper, we provide a summary of existing luciferase-based biosensors and their applications in virology.

8.
Front Immunol ; 11: 2062, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117331

RESUMEN

The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed.


Asunto(s)
Sistemas CRISPR-Cas , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Linfocitos T/inmunología , Animales , Edición Génica , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias/genética , Viroterapia Oncolítica , Linfocitos T/trasplante
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda