Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Diabetologia ; 67(8): 1507-1516, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38811417

RESUMEN

In type 1 diabetes, the insulin-producing beta cells of the pancreas are destroyed through the activity of autoreactive T cells. In addition to strong and well-documented HLA class II risk haplotypes, type 1 diabetes is associated with noncoding polymorphisms within the insulin gene locus. Furthermore, autoantibody prevalence data and murine studies implicate insulin as a crucial autoantigen for the disease. Studies identify secretory granules, where proinsulin is processed into mature insulin, stored and released in response to glucose stimulation, as a source of antigenic epitopes and neoepitopes. In this review, we integrate established concepts, including the role that susceptible HLA and thymic selection of the T cell repertoire play in setting the stage for autoimmunity, with emerging insights about beta cell and insulin secretory granule biology. In particular, the acidic, peptide-rich environment of secretory granules combined with its array of enzymes generates a distinct proteome that is unique to functional beta cells. These factors converge to generate non-templated peptide sequences that are recognised by autoreactive T cells. Although unanswered questions remain, formation and presentation of these epitopes and the resulting immune responses appear to be key aspects of disease initiation. In addition, these pathways may represent important opportunities for therapeutic intervention.


Asunto(s)
Autoantígenos , Diabetes Mellitus Tipo 1 , Insulina , Vesículas Secretoras , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Humanos , Autoantígenos/inmunología , Autoantígenos/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Secretoras/inmunología , Insulina/metabolismo , Insulina/inmunología , Animales , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo
2.
Genes (Basel) ; 15(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38540398

RESUMEN

Helicobacter pylori (H. pylori) is associated with gastric inflammation and mucosal antibodies against its cytotoxin-associated gene A (CagA) are protective. Vaccine-elicited immunity against H. pylori requires MHC class II expression, indicating that CD4+ T cells are protective. We hypothesized that the HLA-DR genotypes in human populations include protective alleles that more effectively bind immunogenic CagA peptide fragments and susceptible alleles with an impaired capacity to present CagA peptides. We recruited patients (n = 170) admitted for gastroendoscopy procedures and performed high-resolution HLA-DRB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.2% positive) and H. pylori classified as positive or negative in gastric mucosal tissue slides (72.9% positive). Pearson Chi-square analysis revealed that H. pylori infection was significantly increased in DRB1*11:04-positive individuals (p = 0.027). Anti-CagA IgA was significantly decreased in DRB1*11:04 positive individuals (p = 0.041). In contrast, anti-CagA IgA was significantly increased in DRB1*03:01 positive individuals (p = 0.030). For these HLA-DRB1 alleles of interest, we utilized two in silico prediction methods to compare their capacity to present CagA peptides. Both methods predicted increased numbers of peptides for DRB1*03:01 than DRB1*11:04. In addition, both alleles preferred distinctively different CagA 15mer peptide sequences for high affinity binding. These observations suggest that DRB1*11:04 is a susceptible genotype with impaired CagA immunity, whereas DRB1*03:01 is a protective genotype that promotes enhanced CagA immunity.


Asunto(s)
Gastritis , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Cadenas HLA-DRB1/genética , Citotoxinas , Gastritis/genética , Genotipo , Péptidos/genética , Inmunoglobulina A/genética
3.
Diabetes ; 73(5): 743-750, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295386

RESUMEN

Hybrid insulin peptides (HIPs) formed through covalent cross-linking of proinsulin fragments to secretory granule peptides are detectable within murine and human islets. The 2.5HIP (C-peptide-chromogranin A [CgA] HIP), recognized by the diabetogenic BDC-2.5 clone, is a major autoantigen in the nonobese diabetic mouse. However, the relevance of this epitope in human disease is currently unclear. A recent study probed T-cell reactivity toward HIPs in patients with type 1 diabetes, documenting responses in one-third of the patients and isolating several HIP-reactive T-cell clones. In this study, we isolated a novel T-cell clone and showed that it responds vigorously to the human equivalent of the 2.5HIP (designated HIP9). Although the responding patient carried the risk-associated DRB1*04:01/DQ8 haplotype, the response was restricted by DRB1*11:03 (DR11). HLA class II tetramer staining revealed higher frequencies of HIP9-reactive T cells in individuals with diabetes than in control participants. Furthermore, in DR11+ participants carrying the DRB4 allele, HIP9-reactive T-cell frequencies were higher than observed frequencies for the immunodominant proinsulin 9-28 epitope. Finally, there was a negative correlation between HIP9-reactive T-cell frequency and age at diagnosis. These results provide direct evidence that this C-peptide-CgA HIP is relevant in human type 1 diabetes and suggest a mechanism by which nonrisk HLA haplotypes may contribute to the development of ß-cell autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Animales , Ratones , Linfocitos T , Proinsulina , Péptido C , Cromogranina A , Péptidos , Insulina Regular Humana , Epítopos , Fragmentos de Péptidos
4.
Diabetes ; 73(5): 728-742, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387030

RESUMEN

The ß-cell plays a crucial role in the pathogenesis of type 1 diabetes, in part through the posttranslational modification of self-proteins by biochemical processes such as deamidation. These neoantigens are potential triggers for breaking immune tolerance. We report the detection by LC-MS/MS of 16 novel Gln and 27 novel Asn deamidations in 14 disease-related proteins within inflammatory cytokine-stressed human islets of Langerhans. T-cell clones responsive against one Gln- and three Asn-deamidated peptides could be isolated from peripheral blood of individuals with type 1 diabetes. Ex vivo HLA class II tetramer staining detected higher T-cell frequencies in individuals with the disease compared with control individuals. Furthermore, there was a positive correlation between the frequencies of T cells specific for deamidated peptides, insulin antibody levels at diagnosis, and duration of disease. These results highlight that stressed human islets are prone to enzymatic and biochemical deamidation and suggest that both Gln- and Asn-deamidated peptides can promote the activation and expansion of autoreactive CD4+ T cells. These findings add to the growing evidence that posttranslational modifications undermine tolerance and may open the road for the development of new diagnostic and therapeutic applications for individuals living with type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Linfocitos T CD4-Positivos , Diabetes Mellitus Tipo 1/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Islotes Pancreáticos/metabolismo , Péptidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda