Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Funct Integr Genomics ; 23(1): 35, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629976

RESUMEN

Rohitukine is a chromone alkaloid and precursor of potent anticancer drugs flavopiridol, P-276-00, and 2,6-dichloro-styryl derivative (11d) (IIIM-290). The metabolite is reported to possess anticancer, anti-inflammatory, antiadipogenic, immunomodulatory, gastroprotective, anti-implantation, antidyslipidemic, anti-arthritic, and anti-fertility properties. However, the physiological role of rohitukine in plant system is yet to be explored. Here, we studied the effect of rohitukine isolated from Dysoxylum gotadhora on Arabidopsis thaliana. The A. thaliana plants grown on a medium fortified with different rohitukine concentrations showed a significant effect on the growth and development. The root growth of A. thaliana seedlings showed considerable inhibition when grown on medium containing 1.0 mM of rohitukine. Transcriptomic analysis indicated the expression of 895 and 932 genes in control and treated samples respectively at a cut-off of FPKM ≥ 1 and P-value < 0.05. Gene ontology (GO) analysis revealed the upregulation of genes related to photosynthesis, membrane transport, antioxidation, xenobiotic degradation, and some transcription factors (TFs) in response to rohitukine. Conversely, rohitukine downregulated several genes including RNA helicases and those involved in nitrogen compound metabolism. The RNA-seq result was also validated by real-time qRT-PCR analysis. In light of these results, we discuss (i) likely ecological importance of rohitukine in parent plant as well as (ii) comparison between responses to rohitukine treatment in plants and mammals.


Asunto(s)
Alcaloides , Antineoplásicos , Arabidopsis , Animales , Arabidopsis/genética , Antineoplásicos/farmacología , Cromonas/farmacología , Cromonas/uso terapéutico , Alcaloides/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Mamíferos
2.
Appl Microbiol Biotechnol ; 107(7-8): 2111-2130, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36912905

RESUMEN

Kojic acid has gained its importance after it was known worldwide that the substance functions primarily as skin-lightening agent. Kojic acid plays a vital role in skin care products, as it enhances the ability to prevent exposure to UV radiation. It inhibits the tyrosinase formation which suppresses hyperpigmentation in human skin. Besides cosmetics, kojic acid is also greatly used in food, agriculture, and pharmaceuticals industries. Conversely, according to Global Industry Analysts, the Middle East, Asia, and in Africa especially, the demand of whitening cream is very high, and probably the market will reach to $31.2 billion by 2024 from $17.9 billion of 2017. The important kojic acid-producing strains were mainly belongs to the genus Aspergillus and Penicillium. Due to its commercial potential, it continues to attract the attention for its green synthesis, and the studies are still widely conducted to improve kojic acid production. Thus, the present review is focused on the current production processes, gene regulation, and limitation of its commercial production, probable reasons, and possible solutions. For the first time, detailed information on the metabolic pathway and the genes involved in kojic acid production, along with illustrations of genes, are highlighted in the present review. Demand and market applications of kojic acid and its regulatory approvals for its safer use are also discussed. KEY POINTS: • Kojic acid is an organic acid that is primarily produced by Aspergillus species. • It is mainly used in the field of health care and cosmetic industries. • Kojic acid and its derivatives seem to be safe molecules for human use.


Asunto(s)
Cosméticos , Piel , Humanos , Piel/metabolismo , Pironas/farmacología , Monofenol Monooxigenasa/metabolismo
3.
Physiol Mol Biol Plants ; 29(7): 959-969, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37649885

RESUMEN

Chalcone synthase (CHS) is a type III polyketide synthase and a key enzyme of the phenylpropanoid pathway that generates precursors for flavonoid biosynthesis. The tree species D. gotadhora is known for having an abundance of rohitukine, which has anti-inflammatory and immune-modulating effects. In this study, we used the leaves of D. gotadhora to clone CHS gene (DbCHS). The 1188-bp open reading frame (ORF) was part of the 1373-bp full-length DbCHS clone. Compared to other parts of the plant, DbCHS is expressed more in the leaves and fruits. This is linked to anti-microbial action against a panel of microbes in these tissues. The leaves and seeds extracts inhibit Bacillus subtilis, Streptococcus pyogenes, Bacillus cereus, and Candida albicans. When a plant is hurt, it leaves its tissues open to attack by microbes. To protect themselves, plants often make chemicals that kill microbes. We found that wounding had a big effect on the production of DbCHS. Based on these tests and the results of phylogenetic analysis and molecular docking, we believe that DbCHS is a wound-inducible enzyme that is needed to make flavonoids, which may give the plant antimicrobial properties. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01344-2.

4.
Virol J ; 18(1): 178, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461941

RESUMEN

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 pandemic, has infected more than 179 million people worldwide. Testing of infected individuals is crucial for identification and isolation, thereby preventing further spread of the disease. Presently, Taqman™ Reverse Transcription Real Time PCR is considered gold standard, and is the most common technique used for molecular testing of COVID-19, though it requires sophisticated equipments, expertise and is also relatively expensive. OBJECTIVE: Development and optimization of an alternate molecular testing method for the diagnosis of COVID-19, through a two step Reverse Transcription Loop-mediated isothermal AMPlification (RT-LAMP). RESULTS: Primers for LAMP were carefully designed for discrimination from other closely related human pathogenic coronaviruses. Care was also taken that primer binding sites are present in conserved regions of SARS-CoV2. Our analysis shows that the primer binding sites are well conserved in all the variants of concern (VOC) and variants of interest (VOI), notified by World Health Organization (WHO). These lineages include B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526 and B.1.617.1. Various DNA polymerases with strand displacement activity were evaluated and conditions were optimized for LAMP amplification and visualization. Different LAMP primer sets were also evaluated using synthetic templates as well as patient samples. CONCLUSION: In a double blind study, the RT-LAMP assay was validated on more than 150 patient samples at two different sites. The RT-LAMP assay appeared to be 89.2% accurate when compared to the Taqman™ rt-RT-PCR assay.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , SARS-CoV-2/genética , COVID-19/diagnóstico , Humanos , Transcripción Reversa , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Sensibilidad y Especificidad
5.
Curr Microbiol ; 78(8): 2860-2898, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34184112

RESUMEN

Many people in different African countries are suffering from different diseases many of which result in serious life threat and public health problems with high risk of infection and mortality. Due to less accessibility and high cost of modern drugs, people of this continent often depend on traditional medicine using medicinal plants to manage the diseases. Africa has large tropical rain forests, which are very rich in medicinal plants. Many of them have been scientifically proven for their medicinal values. These medicinal plants which constitute a large repertoire of endophytes have not been significantly explored for the isolation of these microorganisms and their bioactive secondary metabolites. This review summarizes the research on endophytes isolated from medicinal plants of Africa, their pharmacological potential and some of their biotechnological aspects. Novel compounds reported from endophytes from Africa with their biological activities have also been reviewed. Information documented in this review might serve as starting point for future researches on endophytes in different African countries.


Asunto(s)
Plantas Medicinales , Endófitos/genética , Humanos
6.
Ecotoxicol Environ Saf ; 174: 283-294, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30844668

RESUMEN

The phytohormone jasmonic acid (JA) plays an imperative role in plants by modulating the activity of their antioxidative defense system under stress conditions. Here, we explored the role of JA-induced alterations in the growth and transcript levels of antioxidative enzymes in tomato seedlings exposed to different Pb concentrations (0.25, 0.50, and 0.75 mM). Pb treatment caused a dose-dependent reduction in their root and shoot lengths. Treatment of 0.75 mM Pb showed an increase in the contents of malondialdehyde (MDA), superoxide anion (O2•-), and hydrogen peroxide (H2O2) as compared to the untreated seedlings. Pb uptake was enhanced with an increase in Pb concentration. The seeds primed with JA showed reduction in Pb uptake and improvement in growth under Pb toxicity. The seedlings treated with both JA (100 nM) and Pb (0.75 mM) showed a decline in the levels of MDA, O2•-, and H2O2 as compared to the seedlings treated with 0.75 mM Pb alone. These results suggested that JA (100 nM) mitigated the oxidative damage by lowering the expression of the RBO and P-type ATPase transporter genes and by modulating antioxidative defense system activity. The biochemical and molecular analyses showed that JA plays a crucial role in plant defense responses against Pb stress.


Asunto(s)
Ciclopentanos/farmacología , Plomo/toxicidad , Oxilipinas/farmacología , ATPasas Tipo P/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Inmunidad de la Planta/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Solanum lycopersicum/efectos de los fármacos , Antioxidantes/metabolismo , Relación Dosis-Respuesta a Droga , Solanum lycopersicum/enzimología , Solanum lycopersicum/inmunología
7.
Expert Rev Mol Diagn ; : 1-13, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924448

RESUMEN

INTRODUCTION: Nipah and Hendra viruses belong to the Paramyxoviridae family, which pose a significant threat to human health, with sporadic outbreaks causing severe morbidity and mortality. Early symptoms include fever, cough, sore throat, and headache, which offer little in terms of differential diagnosis. There are no specific therapeutics and vaccines for these viruses. AREAS COVERED: This review comprehensively covers a spectrum of diagnostic techniques for Nipah and Hendra virus infections, discussed in conjunction with appropriate type of samples during the progression of infection. Serological assays, reverse transcriptase Real-Time PCR assays, and isothermal amplification assays are discussed in detail, along with a listing of few commercially available detection kits. Patents protecting inventions in Nipah and Hendra virus detection are also covered. EXPERT OPINION: Despite several outbreaks of Nipah and Hendra infections in the past decade, in-depth research into their pathogenesis, Point-of-Care diagnostics, specific therapies, and human vaccines is lacking. A prompt and accurate diagnosis is pivotal for efficient outbreak management, patient treatment, and the adoption of preventative measures. The emergence of rapid point-of-care tests holds promise in enhancing diagnostic capabilities in real-world settings. The patent landscape emphasizes the importance of innovation and collaboration within the legal and business realms.

8.
Microorganisms ; 11(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985280

RESUMEN

Coleus barbatus is a medicinal herb belonging to Lamiaceae. It is the only living organism known to produce forskolin, which is a labdane diterpene and is reported to activate adenylate cyclase. Microbes associated with plants play an important role in maintaining plant health. Recently, the targeted application of beneficial plant-associated microbes and their combinations in abiotic and biotic stress tolerance has gained momentum. In this work, we carried out the rhizosphere metagenome sequencing of C. barbatus at different developmental stages to understand how rhizosphere microflora are affected by and affect the metabolite content in plants. We found that the Kaistobacter genus was abundantly present in the rhizosphere of C. barbatus and its accumulation pattern appears to correlate with the quantities of forskolin in the roots at different developmental stages. Members of the Phoma genus, known for several pathogenic species, were in lower numbers in the C. barbatus rhizosphere in comparison with C. blumei. To our knowledge, this is the first metagenomic study of the rhizospheric microbiome of C. barbatus, which may help to explore and exploit the culturable and non-culturable microbial diversity present in the rhizosphere.

9.
3 Biotech ; 12(9): 197, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35928501

RESUMEN

We reported that Aspergillus sojae (SSC-3), an indigenous isolate from rice husk, is a potent kojic acid producer. During optimization, it was observed that under static fermentation conditions, this fungal strain produces two dissimilar morphological green and yellow spores, i.e., SSC-3(Y) and SSC-3(G). Furthermore, these different spore types differ in color, morphology, and in kojic acid metabolite accumulation, with green spores producing 12.87 g/l and yellow spores producing 8.63 g/l of kojic acid on the 12th day of fermentation. To understand if there is a genetic basis for the difference in morphology and metabolite accumulation characteristics, sequencing of internal transcribed spacer regions (ITS) and RAPD analysis from both the spore were carried out. Our study revealed that though the spores are dissimilar with respect to morphology and metabolite accumulation profile, they are genetically homogenous. This suggests that there could be epigenetic differences in these spore types, which may be explored in detail in further studies.

10.
Transl Oncol ; 14(1): 100879, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33045679

RESUMEN

The last decade has witnessed a substantial expansion in the field of microRNA (miRNA) biology, providing crucial insights into the role of miRNAs in disease pathology, predominantly in cancer progression and its metastatic spread. The discovery of tumor-suppressing miRNAs represents a potential approach for developing novel therapeutics. In this context, through miRNA microarray analysis, we examined the consequences of Prostate apoptosis response-4 (Par-4), a well-established tumor-suppressor, stimulation on expression of different miRNAs in Panc-1 cells. The results strikingly indicated elevated miR-200c levels in these cells upon Par-4 overexpression. Intriguingly, the Reverse Phase Protein Array (RPPA) analysis revealed differentially expressed proteins (DEPs), which overlap between miR200c- and Par-4-transfected cells, highlighting the cross-talks between these pathways. Notably, Phospho-p44/42 MAPK; Bim; Bcl-xL; Rb Phospho-Ser807, Ser811; Akt Phospho-Ser473; Smad1/5 Phospho-Ser463/Ser465 and Zyxin scored the most significant DEPs among the two data sets. Furthermore, the GFP-Par-4-transfected cells depicted an impeded expression of critical mesenchymal markers viz. TGF-ß1, TGF-ß2, ZEB-1, and Twist-1, concomitant with augmented miR-200c and E-cadherin levels. Strikingly, while Par-4 overexpression halted ZEB-1 at the transcriptional level; contrarily, silencing of endogenous Par-4 by siRNA robustly augmented the Epithelial-mesenchymal transition (EMT) markers, along with declining miR-200c levels. The pharmacological Par-4-inducer, NGD16, triggered Par-4 expression which corresponded with increased miR-200c resulting in the ZEB-1 downregulation. Noteworthily, tumor samples obtained from the syngenic mouse pancreatic cancer model revealed elevated miR-200c levels in the NGD16-treated mice that positively correlated with the Par-4 and E-cadherin levels in vivo; while a negative correlation was evident with ZEB-1 and Vimentin.

11.
Biomolecules ; 10(1)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936090

RESUMEN

The environmental stress, biotic as well as abiotic, is the main cause of decreased growth and crop production. One of the stress-causing agents in plants are parasitic nematodes responsible for crop loss. Jasmonic acid (JA) is recognized as one of signaling molecules in defense-related responses in plants, however, its role under nematode infestation is unclear. Therefore, the present study was planned to traverse the role of JA in boosting the activities of antioxidative enzymes in tomato seedlings during nematode inoculation. Application of JA declined oxidative damage by decreasing O2•- content, nuclear and membrane damage under nematode stress. JA treatment elevated the activities of SOD, POD, CAT, APOX, DHAR, GPOX, GR, and PPO in nematode-infested seedlings. Seed soaking treatment of JA upregulated the expression of SOD, POD, CAT, and GPOX under nematode stress. Various amino acids were found in tomato seedlings and higher content of aspartic acid, histidine, asparagine, glutamine, glutamic acid, glycine, threonine, lysine, arginine, B-alanine, GABA, phenylalanine, proline, and ornithine was observed in seeds soaked with JA (100 nM) treatment during nematode inoculation. The results suggest an indispensable role of JA in basal defense response in plants during nematode stress.


Asunto(s)
Ciclopentanos/farmacología , Infecciones por Nematodos/tratamiento farmacológico , Oxilipinas/farmacología , Solanum lycopersicum/parasitología , Animales , Antioxidantes/metabolismo , Ciclopentanos/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Nematodos/efectos de los fármacos , Nematodos/metabolismo , Oxilipinas/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Estrés Fisiológico/efectos de los fármacos
12.
Eur J Cell Biol ; 99(4): 151076, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32439219

RESUMEN

Deregulation of TGF-ß signaling is intricately engrossed in the pathophysiology of pancreatic adenocarcinomas (PDACs). The role of TGF-ß all through pancreatic cancer initiation and progression is multifarious and somewhat paradoxical. TGF-ß plays a tumor suppressive role in early-stage pancreatic cancer by promoting apoptosis and inhibiting epithelial cell cycle progression, but incites tumor promotion in late-stage by modulating genomic instability, neo-angiogenesis, immune evasion, cell motility, and metastasis. Here, we provide evidences that Par-4 acts as one of the vital mediators to regulate TGF-ß/Smad4 pathway, wherein, Par-4 induction/over-expression induced EMT which was later culminated in to apoptosis in presence of TGF-ß via positive regulation of Smad4. Intriguingly, Par-4-/- cells were devoid of significant Smad4 induction compared to Par-4+/+ cells in presence of TGF-ß and ectopic Par-4 steadily augmented Smad4 expression by restoring TGF-ß/Smad4 axis in Panc-1 cells. Further, our FACS and western blotting results unveiled that Par-4 dragged the PDAC cells to G1 arrest in presence of TGF-ß byelevating p21 and p27 levels while attenuating Cyclin E and A levels and augmenting caspase 3 cleavage triggering lethal EMT. Through restoration of Smad4, we further establish that in BxPC3 cell line (Smad4-/-), Smad4 is essential for Par-4 to indulge TGF-ß dependent lethal EMT program. The mechanistic relevance of Par-4 mediated Smad4 activation was additionally validated by co-immunoprecipitation wherein disruption of NM23H1-STRAP interaction by Par-4 rescues TGF-ß/Smad4 pathway in PDAC and mediates the tumor suppressive role of TGF-ß, therefore serving as a vital cog to restore the apoptotic functions of TGF-ß pathway.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores de Trombina/metabolismo , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Neoplasias Pancreáticas/patología , Plásmidos/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Trombina/genética , Transducción de Señal , Proteína Smad4/biosíntesis , Proteína Smad4/genética , Regulación hacia Arriba
13.
Sci Rep ; 9(1): 5855, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971817

RESUMEN

Plant growth promoting rhizobacteria (PGPRs) are very effective in immobilization of heavy metals and reducing their translocation in plants via precipitation, complex formation and adsorption. The present study was therefore designed to understand the role of Pseudomonas aeruginosa and Burkholderia gladioli in mitigation of Cd stress (0.4 mM) in 10-days old L. esculentum seedlings. The present work investigated growth characteristics, photosynthetic pigments, metal tolerance index, metal uptake and the contents of metal chelating compounds (protein bound and non-protein bound thiols, total thiols) in microbes inoculated Cd treated L. esculentum seedlings. The gene expression profiling of different metal transporters was conducted in order to investigate the quantitative analysis. Our results revealed Cd generated toxicity in seedlings in terms of reduced growth (root length, shoot length and fresh weight) and photosynthetic pigments (chlorophyll, carotenoid and xanthophyll) which enhanced upon inoculations of P. aeruginosa and B. gladioli. Further, the metal uptake along with levels of protein and non-protein bound thiols was also enhanced in Cd-treated seedlings. Gene expression studies suggested enhanced expression in the metal transporter genes which were further declined in the microbe supplemented seedlings. Therefore, micro-organisms possess growth promoting traits that enable them to reduce metal toxicity in plants.


Asunto(s)
Cadmio/toxicidad , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/efectos de los fármacos , Cadmio/química , Cadmio/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Tolerancia a Medicamentos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Proteínas de Transporte de Membrana/genética , Fotosíntesis/efectos de los fármacos , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Compuestos de Sulfhidrilo/química
14.
Chemosphere ; 217: 463-474, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30445394

RESUMEN

The present study was designed to determine the role of plant growth-promoting rhizobacteria (Pseudomonas aeruginosa &Burkholderia gladioli) in alleviating Cd stress in Lycopersicon esculentum. Cd concentration of 0.4 mM enhanced superoxide anions, MDA and H2O2 by 136%, 378% and 137% that also caused nuclear and cell viability damage. Cd enhanced the activities of enzymatic antioxidants such as CAT, GST, GPOX, DHAR, and GR by 64%, 126%, 265%, 25% and 93% respectively. However, SOD, POD and PPO was decreased by Cd and enhanced by 119%, 198% and 42% by inoculation of P. aeruginosa and 65%, 119% and 33% by B. gladioli. The contents of non-enzymatic antioxidants and total antioxidants (WSA, LSA) were also enhanced in response to metal stress and reduced by supplementation with PGPR. Confocal microscopy revealed improved cell viability and decreased nuclear damage in Cd-treated L. esculentum roots supplemented with PGPRs. Gene expression studies conducted through qRT-PCR revealed that expression levels of the SOD, POD, and PPO genes were enhanced by 478%, 830% and 253%, while the expression of CAT, GR, GST, GPOX, and APOX genes decreased by 97%, 87%, 75%, 82%, 88% in P. aeruginosa-inoculated Cd-treated seedlings. Also, B. gladioli elevated the expression of SOD, POD and PPO genes and reduced the expression of CAT, GR, GPOX, APOX and GST genes respectively. Therefore, the results suggest that Cd induced oxidative stress in L. esculentum seedlings was reduced by PGPRs through modulation of antioxidative defence expression as demonstrated in terms of antioxidants both quantitatively as well as qualitatively.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/química , Desarrollo de la Planta/efectos de los fármacos , Solanum lycopersicum/metabolismo , Estrés Oxidativo
15.
Chemosphere ; 230: 628-639, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31128509

RESUMEN

The current study evaluated the synergistic role of Plant growth promoting rhizobacteria (PGPR), Pseudomonas aeruginosa and Burkholderia gladioli on different physiological, biochemical and molecular activities of 10-days old Solanum lycopersicum seedlings under Cd stress. Cd toxicity altered the levels of phenolic compounds (total phenols (30.2%), flavonoids (92.7%), anthocyanin (59.5%), polyphenols (368.7%)), osmolytes (total osmolytes (10.3%), total carbohydrates (94%), reducing sugars (64.5%), trehalose (112.5%), glycine betaine (59%), proline (54.8%), and free amino acids (63%)), and organic acids in S. lycopersicum seedlings. Inoculation of P. aeruginosa and B. gladioli alleviated Cd-induced toxicity, which was manifested through enhanced phenolic compound levels and osmolytes. Additionally, the levels of low molecular weight organic acids (fumaric acid, malic acid, succinic acid, and citric acid) were also elevated. The expression of genes encoding enzymes for phenols and organic acid metabolism were also studied to be modulated that included CHS (chalcone synthase; 138.4%), PAL (phenylalanine ammonia lyase; 206.7%), CS (citrate synthase; 61.3%), SUCLG1 (succinyl Co-A ligase; 33.6%), SDH (succinate dehydrogenase; 23.2%), FH (fumarate hydratase; 12.4%), and MS (malate synthase; 41.2%) and found to be upregulated in seedlings inoculated independently with P. aeruginosa and B. gladioli. The results provide insights into the role of micro-organisms in alleviating Cd-induced physiological damage by altering levels of different metabolites.


Asunto(s)
Burkholderia gladioli/crecimiento & desarrollo , Cadmio/toxicidad , Polifenoles/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad , Solanum lycopersicum/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Rizosfera , Transcriptoma/efectos de los fármacos
16.
Chemosphere ; 235: 734-748, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31280042

RESUMEN

Jasmonic acid (JA) is an important phytohormone associated in defense responses against stress. Crop plants experience heavy metal toxicity and needs to be explored to enhance the crop production. Lead (Pb) is one of the dangerous heavy metal that pollutes soil and water bodies and is released from various sources like discharge from batteries, automobile exhaust, and paints. The present study was designed to evaluate the role of JA (100 nM) on photosynthetic pigments, secondary metabolites, organic acids, and metal ligation compounds in tomato seedlings under different concentrations of Pb (0.25, 0.50, and 0.75 mM). It was observed that Pb treatment declined pigment content, relative water content, and heavy metal tolerance index. Expression of chlorophyllase was also enhanced in Pb-treated seedlings. Seeds primed with JA lowered the expression of chlorophyllase under Pb stress. JA application enhanced the contents of secondary metabolites (total phenols, polyphenols, flavonoids, and anthocyanin) which were confirmed with enhanced expression of chalcone synthase and phenylalanine ammonia lyase in Pb-exposed seedlings. Treatment of JA further elevated the levels of organic acids and metal chelating compounds under Pb toxicity. JA up-regulated the expression of succinate dehydrogenase and fumarate hydratase in Pb-exposed seedlings. Results revealed that seeds primed with JA reduced Pb toxicity by elevating, the levels of photosynthetic pigments, secondary metabolites, osmolytes, metal ligation compounds, organic acids, and polyamine accumulation in tomato seedlings.


Asunto(s)
Ciclopentanos/química , Plomo/química , Oxilipinas/química , Contaminantes del Suelo/química , Solanum lycopersicum/fisiología , Ciclopentanos/metabolismo , Expresión Génica , Inactivación Metabólica/genética , Plomo/metabolismo , Plomo/toxicidad , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Fenoles/metabolismo , Fotosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Polifenoles/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Contaminantes del Suelo/toxicidad
17.
Cell Death Dis ; 10(6): 467, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197132

RESUMEN

Epithelial to mesenchymal transitions (EMT) is a preparatory process for cancer cells to attain motility and further metastasis to distant sites. Majority of DNA damaging drugs have shown to develop EMT as one of the major mechanisms to attain drug resistance. Here we sought to understand the resistance/survival instincts of cancer cells during initial phase of drug treatment. We provide a tangible evidence of stimulation of EMT factors in Apc knockout colorectal carcinoma model. Our results implied that CPT-treated Apc knockout cohorts depicted increased pro-invasive and pro-survival factors (Vimentin/pser38Vimentin & NFκB). Moreover, by cell sorting experiment, we have observed the expression of Vimentin in early apoptotic cells (AnnexinV positive) from 36 to 48 h of CPT treatment. We also observed the expression of chimeric Sec-AnnexinV-mvenus protein in migrated cells on transwell membrane recapitulating signatures of early apoptosis. Notably, induction of Vimentin-mediated signaling (by CPT) delayed apoptosis progression in cells conferring survival responses by modulating the promoter activity of NFκB. Furthermore, our results unveiled a novel link between Vimentin and ATM signaling, orchestrated via binding interaction between Vimentin and ATM kinase. Finally, we observed a significant alteration of crypt-villus morphology upon combination of DIM (EMT inhibitor) with CPT nullified the background EMT signals thus improving the efficacy of the DNA damaging agent. Thus, our findings revealed a resistance strategy of cancer cells within a very initial period of drug treatment by activating EMT program, which hinders the cancer cells to achieve later phases of apoptosis thus increasing the chances of early migration.


Asunto(s)
Apoptosis , Neoplasias Colorrectales/metabolismo , Daño del ADN , Transición Epitelial-Mesenquimal , Vimentina/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Camptotecina/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Vimentina/genética
18.
Eur J Cell Biol ; 96(2): 164-171, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28216015

RESUMEN

Multiple stresses are prevalent inside the tumor microenvironment rendering tumor growth, neighboring invasion and metastasis of the cancer cells to distant organs. NM23-H1 is the first metastasis suppressor gene identified and known to be implicated as an important regulator of stress-induced metastasis. Herein, we demonstrated that prototypical NM23-H1 expression diminished during hypoxia and serum starvation in Panc-1/MDA-MB-231 cells, but converse invasion patterns were obtained in these two diverse stresses. Supportingly, a compelling discrete difference in mRNA and protein levels of NM23-H1 was achieved in hypoxia as well as serum starvation. Knockdown of NM23-H1 activates EMT whereas the similar effects are subdued in serum starvation where NM23-H1 down-modulation prompted E-cadherin upregulation. Stable NM23-H1 expression augmented E-cadherin levels along with retardation in invadopodea formation and invasion. In hypoxia/serum starvation excess NM23-H1 effectively modulated the Twist1 promoter activity. Thus, differential regulation of NM23-H1 may corroborate/abrogate EMT depending on the nature of stress, tumor microenvironment and cellular context.


Asunto(s)
Nucleósido Difosfato Quinasas NM23/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Diferenciación Celular/fisiología , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Nucleósido Difosfato Quinasas NM23/genética , Metástasis de la Neoplasia , Neoplasias/genética , Transfección , Microambiente Tumoral
19.
J Genet ; 95(3): 647-57, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27659336

RESUMEN

Flavonoids are an important class of secondary metabolites that play various roles in plants such as mediating defense, floral pigmentation and plant-microbe interaction. Flavonoids are also known to possess antioxidant and antimicrobial activities. Coleus forskohlii (Willd.) Briq. (Lamiaceae) is an important medicinal herb with a diverse metabolic profile, including production of a flavonoid, genkwanin. However, components of the flavonoid pathway have not yet been studied in this plant. Chalcone synthase (CHS) catalyses the first committed step of flavonoid biosynthetic pathway. Full-length cDNA, showing homology with plant CHS gene was isolated from leaves of C. forskohlii and named CfCHS (GenBank accession no. KF643243). Theoretical translation of CfCHS nucleotide sequence shows that it encodes a protein of 391 amino acids with a molecular weight of 42.75 kDa and pI 6.57. Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate (MeJA) strongly induced its expression. Total flavonoids content and antioxidant activity of C. forskohlii also got enhanced in response to MeJA, which correlated with increased CfCHS expression. Induction of CfCHS by MeJA suggest its involvement in production of flavonoids, providing protection from microbes during herbivory or mechanical wounding. Further, our in silico predictions and experimental data suggested that CfCHS may be posttranscriptionally regulated by miR34.


Asunto(s)
Aciltransferasas/genética , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Proteínas de Plantas/genética , Plectranthus/genética , Acetatos/farmacología , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Ciclopentanos/farmacología , ADN Complementario/genética , ADN Complementario/metabolismo , MicroARNs/metabolismo , Peso Molecular , Sistemas de Lectura Abierta , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales , Plectranthus/efectos de los fármacos , Plectranthus/enzimología , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda