Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
PLoS Biol ; 22(7): e3002724, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39052688

RESUMEN

Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Factores de Transcripción , Sitio de Iniciación de la Transcripción , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cryptococcus/genética , Cryptococcus/patogenicidad , Cryptococcus/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Animales , Ratones , Virulencia/genética , Fagocitosis/genética
2.
mBio ; 15(8): e0153524, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38980041

RESUMEN

At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Empalmosomas , Candida albicans/genética , Candida albicans/patogenicidad , Candida albicans/crecimiento & desarrollo , Candida albicans/fisiología , Candida albicans/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Morfogénesis/genética , Empalme del ARN , Virulencia , Hifa/crecimiento & desarrollo , Hifa/genética , Intrones/genética
3.
STAR Protoc ; 5(2): 103069, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771694

RESUMEN

Extracellular vesicles (EVs) have been identified in diverse fungi, including human pathogens. In this protocol, we present two techniques for isolating and analyzing fungal EVs. The first is for high-throughput screening, and the second is for yielding concentrated samples suitable for centrifugation-based density gradients. We describe steps for analytical assays such as nano-flow cytometry and nanoparticle tracking analysis to measure EV dimensions and concentration. EV suspensions can serve diverse assays, including electron microscopy, compositional determination, and cell-to-cell communication assays. For complete details on the use and execution of this protocol, please refer to Rizzo et al.,1 Rizzo et al.,2 Reis et al.,3 and Reis et al.4.


Asunto(s)
Vesículas Extracelulares , Hongos , Ultracentrifugación , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ultracentrifugación/métodos , Hongos/química , Hongos/metabolismo , Hongos/aislamiento & purificación , Hongos/citología , Citometría de Flujo/métodos , Medios de Cultivo/química
4.
Mem. Inst. Oswaldo Cruz ; 113(7): e170519, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-894937

RESUMEN

In Cryptococcus neoformans, nearly all genes are interrupted by small introns. In recent years, genome annotation and genetic analysis have illuminated the major roles these introns play in the biology of this pathogenic yeast. Introns are necessary for gene expression and alternative splicing can regulate gene expression in response to environmental cues. In addition, recent studies have revealed that C. neoformans introns help to prevent transposon dissemination and protect genome integrity. These characteristics of cryptococcal introns are probably not unique to Cryptococcus, and this yeast likely can be considered as a model for intron-related studies in fungi.


Asunto(s)
Humanos , Criptococosis/prevención & control , Criptococosis/transmisión , Cryptococcus neoformans/patogenicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda