RESUMEN
Soil pollution constitutes one of the major threats to public health, where spreading to groundwater is one of several critical aspects. In most internationally adopted frameworks for routine risk assessments of contaminated land, generic models and soil guideline values are cornerstones. In order to protect the groundwater at contaminated sites, a common practice worldwide today is to depart from health risk-based limit concentrations for groundwater, and use generic soil-to-groundwater spreading models to back-calculate corresponding equilibrium levels (concentration limits) in soil, which must not be exceeded at the site. This study presents an extensive survey of how actual soil and groundwater concentrations, compiled for all high-priority contaminated sites in Sweden, relate to the national model for risk management of contaminated sites, with focus on As, Cu, Pb and Zn. Results show that soil metal concentrations, as well as total amounts, constitute a poor basis for assessing groundwater contamination status. The evaluated model was essentially incapable of predicting groundwater contamination (i.e. concentrations above limit values) based on soil data, and erred on the "unsafe side" in a significant number of cases, with modelled correlations not being conservative enough. Further, the risk of groundwater contamination was almost entirely independent of industry type. In essence, since neither soil contaminant loads nor industry type is conclusive, there is a need for a supportive framework for assessing metal spreading to groundwater accounting for site-specific, geochemical conditions.
Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Metales/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Suecia , Contaminantes Químicos del Agua/análisisRESUMEN
Industrially utilized river basins are frequently exposed to contaminants originating from polluting activities. However, the physical instability and probability of mass movement mobilization of contaminated soil into rivers have only received little attention. In this study, we present a GIS-based method to produce a regional overview of where and how contaminated areas are potentially exposed to slope instability. A landslide susceptibility-index was used to study the degree and distribution of overlap between contaminated sites and unstable ground. A contaminated area instability hazard classification was produced integrating slope instability and contamination risk classification. Our results indicate that mass movement can be tied mainly to a slope gradient ≥16°, a proximity to the river that is <500 m, a distance of <500 m from roads, concave surface curvature, and sand- and silt soils. Forty-six (22%) of all considered contaminated sites are located within areas with a non-negligible slope instability, of which a majority, 30 sites (14%) are situated on ground with a low or moderate instability. Three sites with a class 2 contamination risk (the 2nd highest class) are located on ground with a very high slope instability.
Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Contaminantes del Suelo/análisis , Deslizamientos de Tierra , Ríos , Suelo , SueciaRESUMEN
Wetland area in agricultural landscapes has been heavily reduced to gain land for crop production, but in recent years there is increased societal recognition of the negative consequences from wetland loss on nutrient retention, biodiversity and a range of other benefits to humans. The current trend is therefore to re-establish wetlands, often with an aim to achieve the simultaneous delivery of multiple ecosystem services, i.e., multifunctionality. Here we review the literature on key objectives used to motivate wetland re-establishment in temperate agricultural landscapes (provision of flow regulation, nutrient retention, climate mitigation, biodiversity conservation and cultural ecosystem services), and their relationships to environmental properties, in order to identify potential for tradeoffs and synergies concerning the development of multifunctional wetlands. Through this process, we find that there is a need for a change in scale from a focus on single wetlands to wetlandscapes (multiple neighboring wetlands including their catchments and surrounding landscape features) if multiple societal and environmental goals are to be achieved. Finally, we discuss the key factors to be considered when planning for re-establishment of wetlands that can support achievement of a wide range of objectives at the landscape scale.
Asunto(s)
Ecosistema , Humedales , Humanos , Conservación de los Recursos Naturales , Biodiversidad , AgriculturaRESUMEN
Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976-2015 in 25 wetlandscapes distributed across the world's tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world's land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes.
RESUMEN
Risks associated with metal contaminated sites are tightly linked to material leachability and contaminant mobility. In this study, metal solubility and transport were characterized within a glass waste landfill through i) lysimeter-collection of pore water and standardized batch leaching tests, ii) soil profiles extending from the landfill surface, through unsaturated soil underneath, and into the groundwater zone, and iii) groundwater samples upstream, at, and downstream of the landfill. The soil analyzes targeted both pseudo-total and geochemically active concentrations of contaminant metals (As, Cd, Pb, Sb) and basic soil geochemistry (pH, org. C, Fe, Mn). Water samples were analyzed for dissolved, colloid-bound and particulate metals, and speciation modelling of the aqueous phase was conducted. The results revealed a highly contaminated system, with mean metal concentrations in the waste zone between 90 and 250 times the regional background levels. Despite severe contamination of the waste zone and high geochemically active fractions (80-100%) of all contaminant metals as well as elevated concentrations in landfill pore water, the concentrations of Cd and Pb decrease abruptly at the transition between landfill and underlying natural soil and no indication of groundwater contamination was found. The efficient cation retention is likely due to the high pH. However, the sorption of As and Sb is weaker at such high pH, which explains their higher mobility from the pore water zone into groundwater. The field soil:solution partitioning (Kd) displayed a high spatial variability within the waste zone (the highest Kd variability was seen for Pb, ranging from 140 to 2,900,000â¯lâ¯kg-1), despite little variability in basic geochemical variables, which we suggest is due to waste material heterogeneity.
RESUMEN
This study investigates metal contamination patterns and exposure to Sb, As, Ba, Cd and Pb via intake of drinking water in a region in southeastern Sweden where the production of artistic glass has resulted in a large number of contaminated sites. Despite high total concentrations of metals in soil and groundwater at the glassworks sites properties, all drinking water samples from households with private wells, located at a 30-640m distance from a glassworks site, were below drinking water criteria from the WHO for Sb, As, Ba and Cd. A few drinking water samples showed concentrations of Pb above the WHO guideline, but As was the only element found in concentrations that could result in human exposure near toxicological reference values. An efficient retention of metals in the natural soil close to the source areas, which results in a moderate impact on local drinking water, is implied. Firstly, by the lack of significant difference in metal concentrations when comparing households located upstream and downstream of the main waste deposits, and secondly, by the lack of correlation between the metal concentration in drinking water and distance to the nearest glassworks site. However, elevated Pb and Cd concentrations in drinking water around glassworks sites when compared to regional groundwater indicate that diffuse contamination of the soils found outside the glassworks properties, and not only the glass waste landfills, may have a significant impact on groundwater quality. We further demonstrate that different mobilization patterns apply to different metals. Regarding the need to use reliable data to assess drinking water contamination and human exposure, we finally show that the conservative modelling approaches that are frequently used in routine risk assessments may result in exposure estimates many times higher than those based on measured concentrations in the drinking water that is actually being used for consumption.