RESUMEN
Biological approaches via biomolecular extracts of bacteria, fungi, or plants have recently been introduced as an alternative approach to synthesizing less or nontoxic nanomaterials, compared to conventional physical and chemical approaches. Among these biological methods, plant-mediated approaches (phytosynthesis) are reported to be highly beneficial for large-scale, nontoxic nanomaterial synthesis. However, plant-mediated synthesis of nanomaterials using native plant extract can lead to bioprospecting issues and deforestation challenges. On the other hand, non-native or invasive plants are non-indigenous to a particular geographic location that can grow and spread rapidly, ultimately disrupting the local and endogenous plant communities or ecosystems. Thus, controlling or eradicating these non-native plants before they damage the ecosystem is necessary. Even though mechanical, chemical, and biological approaches are available to control non-native plants, all these methods possess certain limitations, such as environmental toxicity, disturbance in the nutrient cycle, and loss of genetic integrity. Therefore, non-native plants were recently proposed as a novel sustainable source of phytochemicals for preparing nanomaterials via green chemistry, mainly metallic nanoparticles, as an alternative to native, agriculture-based, or medicinal plants. This work aims to cover a literature gap on plant-mediated bionanomaterial synthesis with an overview and bibliography analysis of non-native plants via novel data mining and advanced visualization tools. In addition, the potential of non-native plants as a sustainable, green chemistry-based alternative for bionanomaterial preparation for maintaining ecological balance, the mechanism of formation via phytochemicals, and their possible applications to promote their control and spread were also discussed. The bibliography analysis revealed that only an average of 4 articles have been published in the last 10 years (2013-2023) on non-native/invasive plants for nanomaterial synthesis, which shows the significance of this article.
Asunto(s)
Extractos Vegetales , Extractos Vegetales/química , Nanoestructuras , Ecosistema , Tecnología Química VerdeRESUMEN
Biosensors are analytical devices for detecting a wide range of targets, including cells, proteins, DNA, enzymes, and chemical and biological compounds. They mostly rely on using bioprobes with a high binding affinity to the target for specific detection. However, low specificity and effectiveness of the conventional biosensors has led to the search for novel materials, that can specifically detect biomolecules. Aptamers are a group of single-stranded DNA or RNA oligonucleotides, that can bind to their targets with high specificity and serve as effective bioprobes for developing aptamer-based biosensors. Aptamers have a shorter production time, high stability, compared to traditional bioprobes, and possess ability to develop them for specific target molecules for tailored applications. Thus, various aptasensing approaches, including electrochemical, optical, surface plasmon resonance and chip-dependent approaches, have been investigated in recent times for various biological targets, including foodborne pathogens. Hence, this article is an overview of various conventional foodborne pathogen detection methods, their limitations and the ability of aptamer-based biosensors to overcome those limitations and replace them. In addition, the current status and advances in aptamer-based biosensors for the detection of foodborne pathogens to ensure food safety were also discussed. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05889-8.
RESUMEN
Over the past decade, nanotechnology has been developed and employed across various entities. Among the numerous nanostructured material types, enzyme-incorporated nanomaterials have shown great potential in various fields, as an alternative to biologically derived as well as synthetically developed hybrid structures. The mechanism of incorporating enzyme onto a nanostructure depends on several factors including the method of immobilization, type of nanomaterial, as well as operational and environmental conditions. The prospects of enzyme-incorporated nanomaterials have shown promising results across various applications, such as biocatalysts, biosensors, drug therapy, and wastewater treatment. This is due to their excellent ability to exhibit chemical and physical properties such as high surface-to-volume ratio, recovery and/or reusability rates, sensitivity, response scale, and stable catalytic activity across wide operating conditions. In this review, the evolution of enzyme-incorporated nanomaterials along with their impact on our society due to its state-of-the-art properties, and its significance across different industrial applications are discussed. In addition, the weakness and future prospects of enzyme-incorporated nanomaterials were also discussed to guide scientists for futuristic research and development in this field.
Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Nanoestructuras/química , Nanotecnología/métodosRESUMEN
Drug-induced transformations in disease characteristics at the cellular and molecular level offers the opportunity to predict and evaluate the efficacy of pharmaceutical ingredients whilst enabling the optimal design of new and improved drugs with enhanced pharmacokinetics and pharmacodynamics. Machine learning is a promising in-silico tool used to simulate cells with specific disease properties and to determine their response toward drug uptake. Differences in the properties of normal and infected cells, including biophysical, biochemical and physiological characteristics, plays a key role in developing fundamental cellular probing platforms for machine learning applications. Cellular features can be extracted periodically from both the drug treated, infected, and normal cells via image segmentations in order to probe dynamic differences in cell behavior. Cellular segmentation can be evaluated to reflect the levels of drug effect on a distinct cell or group of cells via probability scoring. This article provides an account for the use of machine learning methods to probe differences in the biophysical, biochemical and physiological characteristics of infected cells in response to pharmacokinetics uptake of drug ingredients for application in cancer, diabetes and neurodegenerative disease therapies.
Asunto(s)
Técnicas Citológicas , Evaluación Preclínica de Medicamentos , Monitoreo de Drogas , Aprendizaje Automático , Modelos Biológicos , Animales , Células Cultivadas , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Análisis de Componente PrincipalRESUMEN
Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.
Asunto(s)
Aptámeros de Nucleótidos , Biomarcadores de Tumor , Técnicas Biosensibles , Detección Precoz del Cáncer , Neoplasias , Humanos , Aptámeros de Nucleótidos/química , Detección Precoz del Cáncer/métodos , Neoplasias/diagnóstico , Técnicas Biosensibles/métodos , Nanotecnología/métodos , Nanoestructuras/química , Nanopartículas del Metal/química , Técnica SELEX de Producción de Aptámeros/métodosRESUMEN
Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.
Asunto(s)
Nanopartículas de Magnetita , Humanos , Disponibilidad Biológica , Cromatografía de Afinidad , Suplementos Dietéticos , HierroRESUMEN
Janus particles have emerged as a novel and smart material that could improve pharmaceutical formulation, drug delivery, and theranostics. Janus particles have two distinct compartments that differ in functionality, physicochemical properties, and morphological characteristics, among other conventional particles. Recently, Janus particles have attracted considerable attention as effective particulate drug delivery systems as they can accommodate two opposing pharmaceutical agents that can be engineered at the molecular level to achieve better target affinity, lower drug dosage to achieve a therapeutic effect, and controlled drug release with improved pharmacokinetics and pharmacodynamics. This article discusses the development of Janus particles for tailored and improved delivery of pharmaceutical agents for diabetes treatment and antimicrobial applications. It provides an account of advances in the synthesis of Janus particles from various materials using different approaches. It appraises Janus particles as a promising particulate system with the potential to improve conventional delivery systems, providing a better loading capacity and targeting specificity whilst promoting multi-drugs loading and single-dose-drug administration.
RESUMEN
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
RESUMEN
The present work aims to prepare copper-doped MgO nanoparticles via a sol-gel approach and study their antidiabetic alpha-amylase inhibition activity with undoped MgO nanoparticles. The ability of G5 amine-terminated polyamidoamine (PAMAM) dendrimer for the controlled release of copper-doped MgO nanoparticles to exhibit alpha-amylase inhibition activity was also evaluated. The synthesis of MgO nanoparticles via sol-gel approach and optimization of calcination temperature and time has led to the formation of nanoparticles with different shapes (spherical, hexagonal, and rod-shaped) and a polydispersity in size ranging from 10 to 100 nm with periclase crystalline phase. The presence of copper ions in the MgO nanoparticles has altered their crystallite size, eventually modifying their size, morphology, and surface charge. The efficiency of dendrimer to stabilize spherical copper-doped MgO nanoparticles (ca. 30 %) is higher than in other samples, which was confirmed by UV-Visible, DLS, FTIR, and TEM analysis. The amylase inhibition assay emphasized that the dendrimer nanoparticles stabilization has led to the prolonged enzyme inhibition ability of MgO and copper-doped MgO nanoparticles for up to 24 h.
Asunto(s)
Dendrímeros , Nanopartículas , Dendrímeros/química , Óxido de Magnesio/química , Magnesio , Cobre , Nanopartículas/química , Poliaminas/química , alfa-AmilasasRESUMEN
In recent years, the global population has increased significantly, resulting in elevated levels of pollution in waterways. Organic pollutants are a major source of water pollution in various parts of the world, with phenolic compounds being the most common hazardous pollutant. These compounds are released from industrial effluents, such as palm oil milling effluent (POME), and cause several environmental issues. Adsorption is known to be an efficient method for mitigating water contaminants, with the ability to eliminate phenolic contaminants even at low concentrations. Carbon-based materials have been reported to be effective composite adsorbents for phenol removal due to their excellent surface features and impressive sorption capability. However, the development of novel sorbents with higher specific sorption capabilities and faster contaminant removal rates is necessary. Graphene possesses exceptionally attractive chemical, thermal, mechanical, and optical properties, including higher chemical stability, thermal conductivity, current density, optical transmittance, and surface area. The unique features of graphene and its derivatives have gained significant attention in the application of sorbents for water decontamination. Recently, the emergence of graphene-based adsorbents with large surface areas and active surfaces has been proposed as a potential alternative to conventional sorbents. The aim of this article is to discuss novel synthesis approaches for producing graphene-based nanomaterials for the adsorptive uptake of organic pollutants from water, with a special focus on phenols associated with POME. Furthermore, this article explores adsorptive properties, experimental parameters for nanomaterial synthesis, isotherms and kinetic models, mechanisms of nanomaterial formation, and the ability of graphene-based materials as adsorbents of specific contaminants.
RESUMEN
This systematic review identified various bioactive compounds which have the potential to serve as novel drugs or leads against acute myeloid leukemia. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy that arises from the dysregulation of cell differentiation, proliferation, and cell death. The risk factors associated with the onset of AML include long-term exposure to radiation and chemicals such as benzene, smoking, genetic disorders, blood disorders, advancement in age, and others. Although novel strategies to manage AML, including a refinement of the conventional chemotherapy regimens, hypomethylating agents, and molecular targeted drugs, have been developed in recent years, resistance and relapse remain the main clinical problems. In this study, three databases, PubMed/MEDLINE, ScienceDirect, and Google Scholar, were systematically searched to identify various bioactive compounds with antileukemic properties. A total of 518 articles were identified, out of which 59 were viewed as eligible for the current report. From the data extracted, over 60 bioactive compounds were identified and divided into five major groups: flavonoids, alkaloids, organosulfur compounds, terpenes, and terpenoids, and other known and emerging bioactive compounds. The mechanism of actions of the analyzed individual bioactive molecules differs remarkably and includes disrupting chromatin structure, upregulating the synthesis of certain DNA repair proteins, inducing cell cycle arrest and apoptosis, and inhibiting/regulating Hsp90 activities, DNA methyltransferase 1, and histone deacetylase 1.
RESUMEN
2020 and 2021 were disastrous years across the world, with the emergence of the severe acute respiratory syndrome coronavirus 2 (SARSCoV2) virus as a pandemic, which continues to be a top global health issue. There are still many countries and regions struggling to fight coronavirus disease 2019 (COVID-19), and, with the emergence of the various variants of the virus, we are still far from considering this global pandemic over. In addition to having good diagnostic tools and a variety of vaccines with high efficacy, it is of utmost importance to develop effective antiviral drugs or therapies to battle COVID-19. Aptamers known as the next-generation targeting elements can offer promising opportunities in developing antiviral drugs against SARS-CoV-2. This is owing to their high specificity and affinity, making them ideal for targeting ligands and neutralizers to impede both, viral entry and replication or even further enhance the anti-infection effects in the infected host cells. Also, aptamers are extremely attractive as they can be rapidly synthesized and scalable with a lower production cost. This work provides in-depth discussions on the potential of aptamers in therapeutic applications, their mode of action, and current progress on the use of aptamer-based therapies against SARS-CoV-2 and other viruses. The article also discusses the limitations associated with aptamer-based SARS-CoV-2-antiviral therapy with several proposed ideas to resolve them. Lastly, theranostic applications of aptamer nanoformulated dendrimers against viral infections are discussed.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Antivirales/uso terapéutico , Antivirales/farmacología , Pandemias , Internalización del VirusRESUMEN
A wide array of biomedical applications, extending from the fabrication of implant materials to targeted drug delivery, can be attributed to polymers. The utilization of chemical monomers to form polymers, such as polypropylene, polystyrene, and polyethylene, can provide high mechanical stability to them and they can be utilized for diverse electronic or thermal applications. However, certain chemical-based synthetic polymers are toxic to humans, animals, plants, and microbial cells. Thus, biopolymers have been introduced as an alternative to make them utilizable for biomedical applications. Even though biopolymers possess beneficial biomedical applications, they are not stable in biological fluids and exhibit toxicity in certain cases. Recent advances in nanotechnology have expanded its applicational significance in various domains, especially in the evolution of biopolymers to transform them into nanoparticles for numerous biomedical applications. In particular, biopolymers are fabricated as nanofibers to enhance their biological properties and to be utilized for exclusive biomedical applications. The aim of this review is to present an overview of various biopolymer nanofibers and their distinct synthesis approaches. In addition, the medical applications of biopolymer nanofibers, including antimicrobial agents, drug delivery systems, biosensor production, tissue engineering, and implant fabrication, are also discussed.
Asunto(s)
Nanofibras , Animales , Biopolímeros , Sistemas de Liberación de Medicamentos , Humanos , Nanofibras/química , Polímeros/química , Ingeniería de TejidosRESUMEN
Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.
RESUMEN
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches via microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal , Nanopartículas del Metal/química , Metales , Óxidos , Extractos Vegetales/químicaRESUMEN
Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.
RESUMEN
In recent times, the search for innovative material to fabricate smart textiles has been increasing to satisfy the expectation and needs of the consumers, as the textile material plays a key role in the evolution of human culture. Further, the textile materials provide an excellent environment for the microbes to grow, because of their large surface area and ability to retain moisture. In addition, the growth of harmful bacteria on the textile material not only damages them but also leads to intolerable foul odour and significant danger to public health. In particular, the pathogenic bacteria present in the fabric surface can cause severe skin infections such as skin allergy and irritation via direct human contact and even can lead to heart problems and pneumonia in certain cases. Recently, nanoparticles and nanomaterials play a significant role in textile industries for developing functional smart textiles with self-cleaning, UV-protection, insect repellent, waterproof, anti-static, flame-resistant and antimicrobial-resistant properties. Thus, this review is an overview of various textile fibres that favour bacterial growth and potential antibacterial nanoparticles that can inhibit the growth of bacteria on fabric surfaces. In addition, the probable antibacterial mechanism of nanoparticles and the significance of the fabric surface modification and fabric finishes in improving the long-term antibacterial efficacy of nanoparticle-coated fabrics were also discussed.
Asunto(s)
Antibacterianos/administración & dosificación , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Nanoestructuras/administración & dosificación , Textiles/microbiología , Animales , Antibacterianos/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Humanos , Nanoestructuras/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/químicaRESUMEN
INTRODUCTION: The 2019-novel coronavirus disease (COVID-19) is an intractable global health challenge resulting in an aberrant rate of morbidity and mortality worldwide. The mode of entry for SARS-CoV-2 into host cells occurs through clathrin-mediated endocytosis. As part of the efforts to mitigate COVID-19 infections, rapid and accurate detection methods, as well as smart vaccine and drug designs with SARS-CoV-2 targeting capabilities are critically needed. This systematic review aimed to present a good mapping between the structural and functional characteristics of aptamers and their potential applications in COVID-19 theranostics. METHODS: In this study, extensive discussions into the potential development of aptameric systems as robust theranostics for rapid mitigation of the virulent SARS-CoV-2 was made. Information required for this study were extracted from a systematic review of literature in PubMed, SCOPUS, Web of Science (WOS), and other official related reports from reputable organisations. RESULTS: The global burden of COVID-19 pandemic was discussed including the progress in rapid detection, repurposing of existing antiviral drugs, and development of prophylactic vaccines. Aptamers have highly specific and stable target binding characteristics which can be generated and engineered with less complexity for COVID-19 targeted theranostic applications. CONCLUSIONS: There is an urgent need to develop safe innovative biomedical technologies to mitigate the dire impact of COVID-19 on public health worldwide. Research advances into aptameric systems bode well with the fact that they can be engineered for the development of effective and affordable diagnostics, therapeutics and prophylactic vaccines for SARS-CoV-2 and other infectious pathogens.
RESUMEN
Targeted treatment of cancer hinges on the identification of specific intracellular molecular receptors on cancer cells to stimulate apoptosis for eventually inhibiting growth; the development of novel ligands to target biomarkers expressed by the cancer cells; and the creation of novel multifunctional carrier systems for targeted delivery of anticancer drugs to specific malignant sites. There are numerous receptors, antigens, and biomarkers that have been discovered as oncological targets (oncotargets) for cancer diagnosis and treatment applications. Oncotargets are critically important to navigate active anticancer drug ingredients to specific disease sites with no/minimal effect on surrounding normal cells. In silico techniques relating to genomics, proteomics, and bioinformatics have catalyzed the discovery of oncotargets for various cancer types. Effective oncotargeting requires high-affinity probes engineered for specific binding of receptors associated with the malignancy. Computational methods such as structural modeling and molecular dynamic (MD) simulations offer opportunities to structurally design novel ligands and optimize binding affinity for specific oncotargets. This article proposes a streamlined approach for the development of ligand-oncotarget bioaffinity systems via integrated structural modeling and MD simulations, making use of proteomics, genomic, and X-ray crystallographic resources, to support targeted diagnosis and treatment of cancers and tumors.
Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/química , Simulación por Computador , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Modelos Moleculares , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Medicina de PrecisiónRESUMEN
Recently, SARS-CoV-2 has been identified as the causative factor of viral infection called COVID-19 that belongs to the zoonotic beta coronavirus family known to cause respiratory disorders or viral pneumonia, followed by an extensive attack on organs that express angiotensin-converting enzyme II (ACE2). Human transmission of this virus occurs via respiratory droplets from symptomatic and asymptomatic patients, which are released into the environment after sneezing or coughing. These droplets are capable of staying in the air as aerosols or surfaces and can be transmitted to persons through inhalation or contact with contaminated surfaces. Thus, there is an urgent need for advanced theranostic solutions to control the spread of COVID-19 infection. The development of such fit-for-purpose technologies hinges on a proper understanding of the transmission, incubation, and structural characteristics of the virus in the external environment and within the host. Hence, this article describes the development of an intrinsic model to describe the incubation characteristics of the virus under varying environmental factors. It also discusses on the evaluation of SARS-CoV-2 structural nucleocapsid protein properties via computational approaches to generate high-affinity binding probes for effective diagnosis and targeted treatment applications by specific targeting of viruses. In addition, this article provides useful insights on the transmission behavior of the virus and creates new opportunities for theranostics development.