Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34332650

RESUMEN

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

2.
Cell ; 167(4): 1014-1027.e12, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881300

RESUMEN

Kinetochores connect centromeric nucleosomes with mitotic-spindle microtubules through conserved, cross-interacting protein subassemblies. In budding yeast, the heterotetrameric MIND complex (Mtw1, Nnf1, Nsl1, Dsn1), ortholog of the metazoan Mis12 complex, joins the centromere-proximal components, Mif2 and COMA, with the principal microtubule-binding component, the Ndc80 complex (Ndc80C). We report the crystal structure of Kluyveromyces lactis MIND and examine its partner interactions, to understand the connection from a centromeric nucleosome to a much larger microtubule. MIND resembles an elongated, asymmetric Y; two globular heads project from a coiled-coil shaft. An N-terminal extension of Dsn1 from one head regulates interactions of the other head, blocking binding of Mif2 and COMA. Dsn1 phosphorylation by Ipl1/Aurora B relieves this autoinhibition, enabling MIND to join an assembling kinetochore. A C-terminal extension of Dsn1 recruits Ndc80C to the opposite end of the shaft. The structure and properties of MIND show how it integrates phospho-regulatory inputs for kinetochore assembly and disassembly.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas Fúngicas/química , Cinetocoros/química , Kluyveromyces/química , Complejos Multiproteicos/química , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Cinetocoros/metabolismo , Kluyveromyces/citología , Kluyveromyces/metabolismo , Complejos Multiproteicos/metabolismo
3.
Cell ; 167(4): 1028-1040.e15, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881301

RESUMEN

Kinetochores, multisubunit protein assemblies, connect chromosomes to spindle microtubules to promote chromosome segregation. The 10-subunit KMN assembly (comprising KNL1, MIS12, and NDC80 complexes, designated KNL1C, MIS12C, and NDC80C) binds microtubules and regulates mitotic checkpoint function through NDC80C and KNL1C, respectively. MIS12C, on the other hand, connects the KMN to the chromosome-proximal domain of the kinetochore through a direct interaction with CENP-C. The structural basis for this crucial bridging function of MIS12C is unknown. Here, we report crystal structures of human MIS12C associated with a fragment of CENP-C and unveil the role of Aurora B kinase in the regulation of this interaction. The structure of MIS12:CENP-C complements previously determined high-resolution structures of functional regions of NDC80C and KNL1C and allows us to build a near-complete structural model of the KMN assembly. Our work illuminates the structural organization of essential chromosome segregation machinery that is conserved in most eukaryotes.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X , Cinetocoros/química , Complejos Multiproteicos/química , Animales , Aurora Quinasa B/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Químicos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
4.
Cell ; 162(2): 314-327, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26144317

RESUMEN

The large (L) proteins of non-segmented, negative-strand RNA viruses, a group that includes Ebola and rabies viruses, catalyze RNA-dependent RNA polymerization with viral ribonucleoprotein as template, a non-canonical sequence of capping and methylation reactions, and polyadenylation of viral messages. We have determined by electron cryomicroscopy the structure of the vesicular stomatitis virus (VSV) L protein. The density map, at a resolution of 3.8 Å, has led to an atomic model for nearly all of the 2109-residue polypeptide chain, which comprises three enzymatic domains (RNA-dependent RNA polymerase [RdRp], polyribonucleotidyl transferase [PRNTase], and methyltransferase) and two structural domains. The RdRp resembles the corresponding enzymatic regions of dsRNA virus polymerases and influenza virus polymerase. A loop from the PRNTase (capping) domain projects into the catalytic site of the RdRp, where it appears to have the role of a priming loop and to couple product elongation to large-scale conformational changes in L.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/ultraestructura , Virus de la Estomatitis Vesicular Indiana/química , Proteínas Virales/química , Proteínas Virales/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transcripción Genética
5.
Nature ; 590(7847): 666-670, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442061

RESUMEN

A non-enveloped virus requires a membrane lesion to deliver its genome into a target cell1. For rotaviruses, membrane perforation is a principal function of the viral outer-layer protein, VP42,3. Here we describe the use of electron cryomicroscopy to determine how VP4 performs this function and show that when activated by cleavage to VP8* and VP5*, VP4 can rearrange on the virion surface from an 'upright' to a 'reversed' conformation. The reversed structure projects a previously buried 'foot' domain outwards into the membrane of the host cell to which the virion has attached. Electron cryotomograms of virus particles entering cells are consistent with this picture. Using a disulfide mutant of VP4, we have also stabilized a probable intermediate in the transition between the two conformations. Our results define molecular mechanisms for the first steps of the penetration of rotaviruses into the membranes of target cells and suggest similarities with mechanisms postulated for other viruses.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Replegamiento Proteico , Rotavirus/metabolismo , Rotavirus/ultraestructura , Internalización del Virus , Animales , Antígenos Virales/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Disulfuros/química , Disulfuros/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Mutación , Conformación Proteica , Proteínas de Unión al ARN/metabolismo , Rotavirus/química , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Virión/química , Virión/metabolismo , Virión/ultraestructura
6.
PLoS Pathog ; 20(4): e1011750, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574119

RESUMEN

Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.


Asunto(s)
Rotavirus , Rotavirus/genética , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Calcio/metabolismo , Liposomas/análisis , Liposomas/metabolismo
7.
J Virol ; 96(16): e0062722, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35924923

RESUMEN

Rotavirus live-attenuated vaccines, both mono- and pentavalent, generate broadly heterotypic protection. B-cells isolated from adults encode neutralizing antibodies, some with affinity for VP5*, that afford broad protection in mice. We have mapped the epitope of one such antibody by determining the high-resolution cryo-EM structure of its antigen-binding fragment (Fab) bound to the virion of a candidate vaccine strain, CDC-9. The Fab contacts both the distal end of a VP5* ß-barrel domain and the two VP8* lectin-like domains at the tip of a projecting spike. Its interactions with VP8* do not impinge on the likely receptor-binding site, suggesting that the mechanism of neutralization is at a step subsequent to initial attachment. We also examined structures of CDC-9 virions from two different stages of serial passaging. Nearly all the VP4 (cleaved to VP8*/VP5*) spikes on particles from the earlier passage (wild-type isolate) had transitioned from the "upright" conformation present on fully infectious virions to the "reversed" conformation that is probably the end state of membrane insertion, unable to mediate penetration, consistent with the very low in vitro infectivity of the wild-type isolate. About half the VP4 spikes were upright on particles from the later passage, which had recovered substantial in vitro infectivity but had acquired an attenuated phenotype in neonatal rats. A mutation in VP4 that occurred during passaging appears to stabilize the interface at the apex of the spike and could account for the greater stability of the upright spikes on the late-passage, attenuated isolate. IMPORTANCE Rotavirus live-attenuated vaccines generate broadly heterotypic protection, and B-cells isolated from adults encode antibodies that are broadly protective in mice. Determining the structural and mechanistic basis of broad protection can contribute to understanding the current limitations of vaccine efficacy in developing countries. The structure of an attenuated human rotavirus isolate (CDC-9) bound with the Fab fragment of a broadly heterotypic protective antibody shows that protection is probably due to inhibition of the conformational transition in the viral spike protein (VP4) critical for viral penetration, rather than to inhibition of receptor binding. A comparison of structures of CDC-9 virus particles at two stages of serial passaging supports a proposed mechanism for initial steps in rotavirus membrane penetration.


Asunto(s)
Anticuerpos ampliamente neutralizantes , Proteínas de la Cápside , Epítopos de Linfocito B , Rotavirus , Vacunas Atenuadas , Virión , Animales , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos ampliamente neutralizantes/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/ultraestructura , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Ratones , Conformación Proteica , Ratas , Rotavirus/química , Rotavirus/clasificación , Rotavirus/inmunología , Rotavirus/fisiología , Pase Seriado , Vacunas Atenuadas/química , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/metabolismo , Virión/inmunología , Virión/metabolismo , Virión/ultraestructura
8.
Mol Cell ; 60(6): 941-52, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26698662

RESUMEN

In insects, brain-derived Prothoracicotropic hormone (PTTH) activates the receptor tyrosine kinase (RTK) Torso to initiate metamorphosis through the release of ecdysone. We have determined the crystal structure of silkworm PTTH in complex with the ligand-binding region of Torso. Here we show that ligand-induced Torso dimerization results from the sequential and negatively cooperative formation of asymmetric heterotetramers. Mathematical modeling of receptor activation based upon our biophysical studies shows that ligand pulses are "buffered" at low receptor levels, leading to a sustained signal. By contrast, high levels of Torso develop the signal intensity and duration of a noncooperative system. We propose that this may allow Torso to coordinate widely different functions from a single ligand by tuning receptor levels. Phylogenic analysis indicates that Torso is found outside arthropods, including human parasitic roundworms. Together, our findings provide mechanistic insight into how this receptor system, with roles in embryonic and adult development, is regulated.


Asunto(s)
Bombyx/metabolismo , Hormonas de Insectos/química , Hormonas de Insectos/metabolismo , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Sitios de Unión , Bombyx/química , Cristalografía por Rayos X , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Modelos Moleculares , Filogenia , Multimerización de Proteína , Receptores de Interleucina-17/química , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 117(4): 2099-2107, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31953264

RESUMEN

Nonsegmented negative-stranded (NNS) RNA viruses, among them the virus that causes rabies (RABV), include many deadly human pathogens. The large polymerase (L) proteins of NNS RNA viruses carry all of the enzymatic functions required for viral messenger RNA (mRNA) transcription and replication: RNA polymerization, mRNA capping, and cap methylation. We describe here a complete structure of RABV L bound with its phosphoprotein cofactor (P), determined by electron cryo-microscopy at 3.3 Å resolution. The complex closely resembles the vesicular stomatitis virus (VSV) L-P, the one other known full-length NNS-RNA L-protein structure, with key local differences (e.g., in L-P interactions). Like the VSV L-P structure, the RABV complex analyzed here represents a preinitiation conformation. Comparison with the likely elongation state, seen in two structures of pneumovirus L-P complexes, suggests differences between priming/initiation and elongation complexes. Analysis of internal cavities within RABV L suggests distinct template and product entry and exit pathways during transcription and replication.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Chaperonas Moleculares/química , Virus de la Rabia/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/química , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/genética , Regulación Viral de la Expresión Génica , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Virus de la Rabia/química , Virus de la Rabia/genética , Virus de la Rabia/metabolismo , Transcripción Genética , Proteínas Virales/genética , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(1): E28-E36, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27974607

RESUMEN

The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a "class I" fusogen) and West Nile virus envelope protein ("class II"). Our study of VSV now extends this description to "class III" viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana/fisiología , Glicoproteínas de Membrana/metabolismo , Orthomyxoviridae/metabolismo , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo , Virus del Nilo Occidental/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorocebus aethiops , Cricetinae , Colorantes Fluorescentes/química , Modelos Moleculares , Conformación Proteica , Células Vero
11.
Hum Brain Mapp ; 40(16): 4606-4617, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31322793

RESUMEN

Prognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer-assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal. We used a one-dimensional convolutional neural network (CNN) to predict functional outcome based on 19-channel-EEG recorded from 267 adult comatose patients during targeted temperature management after CA. The area under the receiver operating characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture and fine-tuning only played a marginal role in classification performance. We then used gradient-weighted class activation mapping (Grad-CAM) as visualization technique to identify which EEG features were used by the network to classify an EEG epoch as favorable or unfavorable outcome, and also to understand failures of the network. Grad-CAM showed that the network relied on similar features than classical visual analysis for predicting unfavorable outcome (suppressed background, epileptiform transients). This study confirms that CNNs are promising models for EEG-based prognostication in comatose patients, and that Grad-CAM can provide explanation for the models' decision-making, which is of utmost importance for future use of deep learning models in a clinical setting.


Asunto(s)
Electroencefalografía , Paro Cardíaco/diagnóstico , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Coma/diagnóstico , Coma/diagnóstico por imagen , Aprendizaje Profundo , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Femenino , Paro Cardíaco/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Pronóstico , Sueño , Resultado del Tratamiento
12.
Nature ; 477(7366): 561-6, 2011 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-21927001

RESUMEN

Dynamin-related proteins (DRPs) are multi-domain GTPases that function via oligomerization and GTP-dependent conformational changes to play central roles in regulating membrane structure across phylogenetic kingdoms. How DRPs harness self-assembly and GTP-dependent conformational changes to remodel membranes is not understood. Here we present the crystal structure of an assembly-deficient mammalian endocytic DRP, dynamin 1, lacking the proline-rich domain, in its nucleotide-free state. The dynamin 1 monomer is an extended structure with the GTPase domain and bundle signalling element positioned on top of a long helical stalk with the pleckstrin homology domain flexibly attached on its opposing end. Dynamin 1 dimer and higher order dimer multimers form via interfaces located in the stalk. Analysis of these interfaces provides insight into DRP family member specificity and regulation and provides a framework for understanding the biogenesis of higher order DRP structures and the mechanism of DRP-mediated membrane scission events.


Asunto(s)
Dinamina I/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Cristalización , Cristalografía por Rayos X , Dinamina I/genética , Dinamina I/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos , Unión Proteica , Conformación Proteica , Multimerización de Proteína/genética , Estructura Terciaria de Proteína/genética , Ratas
13.
Proc Natl Acad Sci U S A ; 111(31): E3187-95, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049413

RESUMEN

The interaction of the eukaryotic translation initiation factor eIF4E with the initiation factor eIF4G recruits the 40S ribosomal particle to the 5' end of mRNAs, facilitates scanning to the AUG start codon, and is crucial for eukaryotic translation of nearly all genes. Efficient recruitment of the 40S particle is particularly important for translation of mRNAs encoding oncoproteins and growth-promoting factors, which often harbor complex 5' UTRs and require efficient initiation. Thus, inhibiting the eIF4E/eIF4G interaction has emerged as a previously unpursued route for developing anticancer agents. Indeed, we discovered small-molecule inhibitors of this eIF4E/eIF4G interaction (4EGIs) that inhibit translation initiation both in vitro and in vivo and were used successfully in numerous cancer-biology and neurobiology studies. However, their detailed molecular mechanism of action has remained elusive. Here, we show that the eIF4E/eIF4G inhibitor 4EGI-1 acts allosterically by binding to a site on eIF4E distant from the eIF4G binding epitope. Data from NMR mapping and high-resolution crystal structures are congruent with this mechanism, where 4EGI-1 attaches to a hydrophobic pocket of eIF4E between ß-sheet2 (L60-T68) and α-helix1 (E69-N77), causing localized conformational changes mainly in the H78-L85 region. It acts by unfolding a short 310-helix (S82-L85) while extending α-helix1 by one turn (H78-S82). This unusual helix rearrangement has not been seen in any previous eIF4E structure and reveals elements of an allosteric inhibition mechanism leading to the dislocation of eIF4G from eIF4E.


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Hidrazonas/química , Hidrazonas/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Regulación Alostérica , Sitios de Unión , Cristalografía por Rayos X , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4G Eucariótico de Iniciación/química , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Péptidos/química , Péptidos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Caperuzas de ARN/metabolismo , Soluciones
14.
Nat Commun ; 15(1): 250, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177118

RESUMEN

Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We use electron cryomicroscopy to determine a 3.2 Å helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a distinct protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism shows that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.


Asunto(s)
Baculoviridae , Nucleocápside , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Spodoptera , Nucleocápside/genética , Nucleocápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo
15.
Open Biol ; 13(3): 220378, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36883282

RESUMEN

The conserved Ndc80 kinetochore complex, Ndc80c, is the principal link between mitotic spindle microtubules and centromere-associated proteins. We used AlphaFold 2 (AF2) to obtain predictions of the Ndc80 'loop' structure and of the Ndc80 : Nuf2 globular head domains that interact with the Dam1 subunit of the heterodecameric DASH/Dam1 complex (Dam1c). The predictions guided design of crystallizable constructs, with structures close to the predicted ones. The Ndc80 'loop' is a stiff, α-helical 'switchback' structure; AF2 predictions and positions of preferential cleavage sites indicate that flexibility within the long Ndc80c rod occurs instead at a hinge closer to the globular head. Conserved stretches of the Dam1 C terminus bind Ndc80c such that phosphorylation of Dam1 serine residues 257, 265 and 292 by the mitotic kinase Ipl1/Aurora B can release this contact during error correction of mis-attached kinetochores. We integrate the structural results presented here into our current molecular model of the kinetochore-microtubule interface. The model illustrates how multiple interactions between Ndc80c, DASH/Dam1c and the microtubule lattice stabilize kinetochore attachments.


Asunto(s)
Cinetocoros , Microtúbulos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular , Centrómero/genética , Centrómero/metabolismo , Furilfuramida , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
bioRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905109

RESUMEN

Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both outer-layer proteins from the particle. The other outer-layer protein, VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.

17.
bioRxiv ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37398449

RESUMEN

Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We determined a 3.2 Å electron cryomicroscopy helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a unique protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism revealed that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.

18.
Nat Commun ; 13(1): 4802, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970826

RESUMEN

Vesicular stomatitis virus (VSV) is a negative-strand RNA virus with a non-segmented genome, closely related to rabies virus. Both have characteristic bullet-like shapes. We report the structure of intact, infectious VSV particles determined by cryogenic electron microscopy. By compensating for polymorphism among viral particles with computational classification, we obtained a reconstruction of the shaft ("trunk") at 3.5 Å resolution, with lower resolution for the rounded tip. The ribonucleoprotein (RNP), genomic RNA complexed with nucleoprotein (N), curls into a dome-like structure with about eight gradually expanding turns before transitioning into the regular helical trunk. Two layers of matrix (M) protein link the RNP with the membrane. Radial inter-layer subunit contacts are fixed within single RNA-N-M1-M2 modules, but flexible lateral and axial interactions allow assembly of polymorphic virions. Together with published structures of recombinant N in various states, our results suggest a mechanism for membrane-coupled self-assembly of VSV and its relatives.


Asunto(s)
Estomatitis Vesicular , Animales , ARN , ARN Viral/genética , ARN Viral/metabolismo , Ribonucleoproteínas , Virus de la Estomatitis Vesicular Indiana/genética , Vesiculovirus/genética , Virión/metabolismo , Ensamble de Virus
19.
Nature ; 438(7066): 318-24, 2005 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-16292303

RESUMEN

Secreted and membrane proteins are translocated across or into cell membranes through a protein-conducting channel (PCC). Here we present a cryo-electron microscopy reconstruction of the Escherichia coli PCC, SecYEG, complexed with the ribosome and a nascent chain containing a signal anchor. This reconstruction shows a messenger RNA, three transfer RNAs, the nascent chain, and detailed features of both a translocating PCC and a second, non-translocating PCC bound to mRNA hairpins. The translocating PCC forms connections with ribosomal RNA hairpins on two sides and ribosomal proteins at the back, leaving a frontal opening. Normal mode-based flexible fitting of the archaeal SecYEbeta structure into the PCC electron microscopy densities favours a front-to-front arrangement of two SecYEG complexes in the PCC, and supports channel formation by the opening of two linked SecY halves during polypeptide translocation. On the basis of our observation in the translocating PCC of two segregated pores with different degrees of access to bulk lipid, we propose a model for co-translational protein translocation.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/biosíntesis , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Docilidad , Unión Proteica , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC
20.
Curr Opin Struct Biol ; 17(5): 572-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17964135

RESUMEN

High-resolution structures of macromolecular assemblies are pivotal for our understanding of their biological functions in fundamental cellular processes. In the field of X-ray crystallography, recent methodological and instrumental advances have led to the structure determinations of macromolecular assemblies of increased size and complexity, such as those of ribosomal complexes, RNA polymerases, and large multifunctional enzymes. These advances include the use of robotic screening techniques that maximize the chances of obtaining well-diffracting crystals of large complexes through the fine sampling of crystallization space. Sophisticated crystal optimization and cryoprotection techniques and the use of highly brilliant X-ray beams from third-generation synchrotron light sources now allow data collection from weakly diffracting crystals with large asymmetric units. Combined approaches are used to derive phase information, including phases calculated from electron microscopy (EM) models, heavy atom clusters, and density modification protocols. New crystallographic software tools prove valuable for structure determination and model refinement of large macromolecular complexes.


Asunto(s)
Cristalización/métodos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/aislamiento & purificación , Cristalografía por Rayos X , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/aislamiento & purificación , Modelos Moleculares , Estructura Molecular , Muramidasa/química , Muramidasa/aislamiento & purificación , ARN Polimerasa II/química , ARN Polimerasa II/aislamiento & purificación , Electricidad Estática
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda