Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Anal Chem ; 96(25): 10210-10218, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869925

RESUMEN

Ultrahigh resolution mass spectrometry (UHRMS) routinely detects and identifies thousands of mass peaks in complex mixtures, such as natural organic matter (NOM) and petroleum. The assignment of several chemically plausible molecular formulas (MFs) for a single accurate mass still poses a major problem for the reliable interpretation of NOM composition in a biogeochemical context. Applying sensible chemical rules for MF validation is often insufficient to eliminate multiple assignments (MultiAs)─especially for mass peaks with low abundance or if ample heteroatoms or isotopes are included - and requires manual inspection or expert judgment. Here, we present a new approach based on mass error distributions for the identification of true and false assignments among MultiAs. To this end, we used the mass error in millidalton (mDa), which was superior to the commonly used relative mass error in ppm. We developed an automatic workflow to group MultiAs based on their shared formula units and Kendrick mass defect values and to evaluate the mass error distribution. In this way, the number of valid assignments of chlorinated disinfection byproducts was increased by 8-fold as compared to only applying 37Cl/35Cl isotope ratio filters. Likewise, phosphorus-containing MFs can be differentiated against chlorine-containing MFs with high confidence. Further, false assignments of highly aromatic sulfur-containing MFs ("black sulfur") to sodium adducts in negative ionization mode can be excluded by applying our approach. Overall, MFs for mass peaks that are close to the detection limit or where naturally occurring isotopes are rare (e.g., 15N) or absent (e.g., P and F) can now be validated, substantially increasing the reliability of MF assignments and broadening the applicability of UHRMS analysis to even more complex samples and processes.

2.
Analyst ; 149(12): 3468-3478, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742449

RESUMEN

Ultrahigh resolution mass spectrometry hyphenated with liquid chromatography (LC) is an emerging tool to explore the isomeric composition of dissolved organic matter (DOM). However, matrix effects limit the potential for semi-quantitative comparison of DOM molecule abundances across samples. We introduce a post-column infused internal standard (PCI-IS) for reversed-phase LC-FT-ICR MS measurements of DOM and systematically evaluate matrix effects, detector linearity and the precision of mass peak intensities. Matrix effects for model compounds spiked into freshwater DOM samples ranging from a headwater stream to a major river were reduced by 5-10% for PCI-IS corrected mass peak intensities as compared to raw (i.e., untransformed) intensities. A linear regression of PCI-IS corrected DOM mass peak intensities across a typical DOM concentration range (2-15 mg dissolved organic carbon L-1) in original, non-extracted freshwater samples demonstrates excellent linearity of the detector response (r2 > 0.9 for 98% of detected molecular formulas across retention times). Importantly, PCI-IS could compensate for 80% of matrix effects across an environmental gradient of DOM composition from groundwater to surface water. This enabled studying the ionization efficiency of DOM isomers and linking the observed differences to the biogeochemical sources. With PCI-IS original, non-extracted DOM samples can be analysed by LC-FT-ICR MS without carbon load adjustment, and mass peak intensities can be reliably used to semi-quantitatively compare isomer abundances between compositionally similar DOM samples.

3.
Environ Sci Technol ; 58(10): 4637-4647, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38427796

RESUMEN

Marine dissolved organic matter (DOM) is an important component of the global carbon cycle, yet its intricate composition and the sea salt matrix pose major challenges for chemical analysis. We introduce a direct injection, reversed-phase liquid chromatography ultrahigh resolution mass spectrometry approach to analyze marine DOM without the need for solid-phase extraction. Effective separation of salt and DOM is achieved with a large chromatographic column and an extended isocratic aqueous step. Postcolumn dilution of the sample flow with buffer-free solvents and implementing a counter gradient reduced salt buildup in the ion source and resulted in excellent repeatability. With this method, over 5,500 unique molecular formulas were detected from just 5.5 nmol carbon in 100 µL of filtered Arctic Ocean seawater. We observed a highly linear detector response for variable sample carbon concentrations and a high robustness against the salt matrix. Compared to solid-phase extracted DOM, our direct injection method demonstrated superior sensitivity for heteroatom-containing DOM. The direct analysis of seawater offers fast and simple sample preparation and avoids fractionation introduced by extraction. The method facilitates studies in environments, where only minimal sample volume is available e.g. in marine sediment pore water, ice cores, or permafrost soil solution. The small volume requirement also supports higher spatial (e.g., in soils) or temporal sample resolution (e.g., in culture experiments). Chromatographic separation adds further chemical information to molecular formulas, enhancing our understanding of marine biogeochemistry, chemodiversity, and ecological processes.


Asunto(s)
Materia Orgánica Disuelta , Agua , Espectrometría de Masas/métodos , Agua/química , Agua Dulce/química , Cloruro de Sodio , Carbono
4.
Environ Sci Technol ; 56(3): 1894-1904, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007417

RESUMEN

Effluent organic matter (EfOM), a major ozone consumer during wastewater ozonation, is a complex mixture of natural and anthropogenic organic molecules. Ozonation of EfOM adds to molecular complexity by introducing polar and potentially mobile ozonation byproducts (OBPs). Currently, nontargeted direct infusion (DI) ultrahigh resolution mass spectrometry (e.g. FT-ICR-MS) is used to study OBPs but requires sample extraction, limiting the accessible polarity range of OBPs. To better understand the impact of ozonation on EfOM and the formation of polar OBPs, nonextracted effluent was analyzed by direct injection onto a reversed-phase liquid chromatography system (RP-LC) online hyphenated with an FT-ICR-MS. Over four times more OBPs were detected in nonextracted EfOM compared to effluent extracted with solid phase extraction and measured with DI-FT-ICR-MS (13817 vs 3075). Over 1500 highly oxygenated OBPs were detected exclusively in early eluting fractions of nonextracted EfOM, indicating polar OBPs. Oxygenation of these newly discovered OBPs is higher than previously found, with an average molecular DBE-O value of -3.3 and O/C ratio of 0.84 in the earliest eluting OBP fractions. These polar OBPs are consistently lost during extraction but may play an important role in understanding the environmental impact of ozonated EfOM. Moreover, 316 molecular formulas classified as nonreactive to ozone in DI-FT-ICR-MS can be identified with LC-FT-ICR-MS as isomers with varying degrees of reactivity, providing for the first time experimental evidence of differential reactivity of complex organic matter isomers with ozone.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Espectrometría de Masas , Ozono/química , Extracción en Fase Sólida , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
5.
Mol Pharmacol ; 93(4): 376-386, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436492

RESUMEN

There is abundant evidence for formation of G protein-coupled receptor heteromers in heterologous expression systems, but little is known of the function of heteromers in native systems. Heteromers of δ and κ opioid receptors (DOR-KOR heteromers) have been identified in native systems. We previously reported that activation of DOR-KOR heteromers expressed by rat pain-sensing neurons (nociceptors) produces robust, peripherally mediated antinociception. Moreover, DOR agonist potency and efficacy is regulated by KOR antagonists via allosteric interactions within the DOR-KOR heteromer in a ligand-dependent manner. Here we assessed the reciprocal regulation of KOR agonist function by DOR antagonists in adult rat nociceptors in culture and in a behavioral assay of nociception. Naltrindole enhanced the potency of the KOR agonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-pyrrolidin-1-ylethyl]acetamide (ICI-199441) 10- to 20-fold, but did not alter responses to 2-(3,4-dichlorophenyl)-N-methyl-N-[(1R,2R)-2-pyrrolidin-1-ylcyclohexyl]acetamide (U50488). By contrast, the potency of U50488 was enhanced 20-fold by 7-benzylidenenaltrexone. The efficacy of 6'-guanidinonaltrindole (6'-GNTI) to inhibit nociceptors was blocked by small interfering RNA knockdown of DOR or KOR. Replacing 6'-GNTI occupancy of DOR with either naltrindole or 7-benzylidenenaltrexone abolished 6'-GNTI efficacy. Further, peptides derived from DOR transmembrane segment 1 fused to the cell membrane-penetrating HIV transactivator of transcription peptide also blocked 6'-GNTI-mediated responses ex vivo and in vivo, suggesting that 6'-GNTI efficacy in nociceptors is due to its positive allosteric regulation of KOR via occupancy of DOR in a DOR-KOR heteromer. Together, these results provide evidence for the existence of functional DOR-KOR heteromers in rat peripheral sensory neurons and that reciprocal, ligand-dependent allosteric interactions occur between the DOR and KOR protomers.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Ganglio del Trigémino/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Masculino , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Opioides delta/fisiología , Receptores Opioides kappa/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Ganglio del Trigémino/fisiología
6.
Clin Lung Cancer ; 25(2): 91-99, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38135566

RESUMEN

Central nervous system (CNS) metastases are frequently diagnosed in patients with non-small cell lung cancer (NSCLC). Only recently, clinical trials are broadening eligibility to include patients with brain metastases, offering the potential for some assessment of CNS efficacy to be made. In this work we aim to review the available information on the activity of small molecule targeted drugs for advanced NSCLC with respect to CNS metastases. We analyze a framework for evaluation assessment regarding trials of systemic agents being conducted in patients with, or at risk from, CNS metastases, and provide examples of NSCLC targeted therapies evaluated in the CNS.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias del Sistema Nervioso Central , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/secundario
7.
Water Res ; 229: 119477, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528925

RESUMEN

Despite effluent organic matter (EfOM) being a major consumer of ozone during wastewater treatment, little is known about ozonation byproducts (OBPs) produced from EfOM. To unambiguously identify OBPs, heavy ozone was used to ozonate EfOM, resulting in 18O labeled and unlabeled OBPs. Labeled OBPs mostly represent a single 18O transfer and were classified as either direct or indirect OBPs based on the 18O/16O intensity ratios of the isotopologues. Of the 929 labeled OBPs, 84 were unequivocally classified as direct OBPs. The remainder suggest a major contribution by indirect, hydroxyl radical induced formation of OBPs in EfOM. Overall, labelled OBPs possess a low degree of unsaturation and contributed most to OBP peak intensity - marking them as potential end products. A few direct and indirect OBPs with high peak intensity containing 18O and heteroatoms (N, S) were fragmented with CID FT-ICR-MS/MS and screened for indicative neutral losses carrying heavy oxygen. The neutral loss screening was used to detect the 18O location on the OBP and indicate the original functional group in EfOM based on known reaction mechanisms. We identified sulfoxide and sulfonic acid functional groups in selected OBPs - implying the presence of reduced sulfur in EfOM molecules - while no evidence for nitrogen containing functional groups reacting with ozone was found.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Marcaje Isotópico , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Oxígeno , Purificación del Agua/métodos
8.
Mol Neurobiol ; 60(3): 1179-1194, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36422814

RESUMEN

Neuropathic pain is a common chronic condition, which remains poorly understood. Many patients receiving treatment continue to experience severe pain, due to limited diagnostic/treatment management programmes. The development of objective clinical diagnostic/treatment strategies requires identification of robust biomarkers of neuropathic pain. To this end, we looked to identify biomarkers of chronic neuropathic pain by assessing gene expression profiles in an animal model of neuropathic pain, and differential gene expression in patients to determine the potential translatability. We demonstrated cross-species validation of several genes including those identified through bioinformatic analysis by assessing their expression in blood samples from neuropathic pain patients, according to conservative assessments of significance measured using Bonferroni-corrected p-values. These include CASP5 (p = 0.00226), CASP8 (p = 0.00587), CASP9 (p = 2.09 × 10-9), FPR2 (p = 0.00278), SH3BGRL3 (p = 0.00633), and TMEM88 (p = 0.00038). A ROC analysis revealed several combinations of genes to show high levels of discriminatory power in the comparison of neuropathic pain patients and control participants, of which the combination SH3BGRL3, TMEM88, and CASP9 achieved the highest level (AUROC = 0.923). The CASP9 gene was found to be common in five combinations of three genes revealing the highest levels of discriminatory power. In contrast, the gene combination PLAC8, ROMO1, and A3GALT2 showed the highest levels of discriminatory power in the comparison of neuropathic pain and nociceptive pain (AUROC = 0.919), when patients were grouped by S-LANSS scores. Molecules that demonstrate an active role in neuropathic pain have the potential to be developed into a biological measure for objective diagnostic tests, or as novel drug targets for improved pain management.


Asunto(s)
Neuralgia , Animales , Humanos , Dimensión del Dolor , Enfermedad Crónica , Modelos Animales , Neuralgia/diagnóstico , Neuralgia/genética , Neuralgia/terapia , Biomarcadores , Proteínas Adaptadoras Transductoras de Señales , Proteínas , Proteínas de la Membrana , Proteínas Mitocondriales
9.
Neuropharmacology ; 220: 109251, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126728

RESUMEN

Long-term inhibition of kappa opioid receptor (KOR) signaling in peripheral pain-sensing neurons is a potential obstacle for development of peripherally-restricted KOR agonists that produce analgesia. Such a long-term inhibitory mechanism is invoked from activation of c-Jun N-terminal kinase (JNK) that follows a single injection of the KOR antagonist norbinaltorphimine (norBNI). This effect requires protein synthesis of an unknown mediator in peripheral pain-sensing neurons. Using 2D difference gel electrophoresis with tandem mass spectrometry, we have identified that the scaffolding protein 14-3-3γ is upregulated in peripheral sensory neurons following activation of JNK with norBNI. Knockdown of 14-3-3γ by siRNA eliminates the long-term reduction in KOR-mediated cAMP signaling by norBNI in peripheral sensory neurons in culture. Similarly, knockdown of 14-3-3γ in the rat hind paw abolished the norBNI-mediated long-term reduction in peripheral KOR-mediated antinociception. Further, overexpression of 14-3-3γ in KOR expressing CHO cells prevented KOR-mediated inhibition of cAMP signaling. These long-term effects are selective for KOR as heterologous regulation of other receptor systems was not observed. These data suggest that 14-3-3γ is both necessary and sufficient for the long-term inhibition of KOR by norBNI in peripheral sensory neurons.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Receptores Opioides kappa , Proteínas 14-3-3 , Analgésicos , Animales , Cricetinae , Cricetulus , Naltrexona/análogos & derivados , Dolor , ARN Interferente Pequeño , Ratas , Receptores Opioides kappa/metabolismo
10.
Neuropharmacology ; 216: 109187, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35835212

RESUMEN

Pain and pain management in the elderly population is a significant social and medical problem. Pain sensation is a complex phenomenon that typically involves activation of peripheral pain-sensing neurons (nociceptors) which send signals to the spinal cord and brain that are interpreted as pain, an unpleasant sensory experience. In this work, young (4-5 months) and aged (26-27 months) Fischer 344 x Brown Norway (F344xBN) rats were examined for nociceptor sensitivity to activation by thermal (cold and heat) and mechanical stimulation following treatment with inflammatory mediators and activators of transient receptor potential (TRP) channels. Unlike other senses that decrease in sensitivity with age, sensitivity of hindpaw nociceptors to thermal and mechanical stimulation was not different between young and aged F344xBN rats. Intraplantar injection of bradykinin (BK) produced greater thermal and mechanical allodynia in aged versus young rats, whereas only mechanical allodynia was greater in aged rats following injection of prostaglandin E2 (PGE2). Intraplantar injection of TRP channel activators, capsaicin (TRPV1), mustard oil (TRPA1) and menthol (TRPM8) each resulted in greater mechanical allodynia in aged versus young rats and capsaicin-induced heat allodynia was also greater in aged rats. A treatment-induced allodynia that was greater in young rats was never observed. The anti-allodynic effects of intraplantar injection of kappa and delta opioid receptor agonists, salvinorin-A and D-Pen2,D-Pen5]enkephalin (DPDPE), respectively, were greater in aged than young rats, whereas mu opioid receptor agonists, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and morphine, were not effective in aged rats. Consistent with these observations, in primary cultures of peripheral sensory neurons, inhibition of cAMP signaling in response to delta and kappa receptor agonists was greater in cultures derived from aged rats. By contrast, mu receptor agonists did not inhibit cAMP signaling in aged rats. Thus, age-related changes in nociceptors generally favor increased pain signaling in aged versus young rats, suggesting that changes in nociceptor sensitivity may play a role in the increased incidence of pain in the elderly population. These results also suggest that development of peripherally-restricted kappa or delta opioid receptor agonists may provide safer and effective pain relief for the elderly.


Asunto(s)
Hiperalgesia , Receptores Opioides delta , Anciano , Analgésicos Opioides/farmacología , Animales , Capsaicina/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Encefalinas , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Nociceptores , Dolor , Ratas , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Células Receptoras Sensoriales
11.
Pharmacol Res Perspect ; 9(6): e00887, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34713624

RESUMEN

Opioid overdose is a leading cause of death in the United States. The only treatment available currently is the competitive antagonist, naloxone (Narcan® ). Although naloxone is very effective and has saved many lives, as a competitive antagonist it has limitations. Due to the short half-life of naloxone, renarcotization can occur if the ingested opioid agonist remains in the body longer. Moreover, because antagonism by naloxone is surmountable, renarcotization can also occur in the presence of naloxone if a relatively larger dose of opioid agonist is taken. In such circumstances, a long-lasting, non-surmountable antagonist would offer an improvement in overdose treatment. Methocinnamox (MCAM) has been reported to have a long duration of antagonist action at mu opioid receptors in vivo. In HEK cells expressing the human mu opioid receptor, MCAM antagonism of mu agonist-inhibition of cAMP production was time-dependent, non-surmountable and non-reversible, consistent with (pseudo)-irreversible binding. In vivo, MCAM injected locally into the rat hindpaw antagonized mu agonist-mediated inhibition of thermal allodynia for up to 96 h. By contrast, antagonism by MCAM of delta or kappa agonists in HEK cells and in vivo was consistent with simple competitive antagonism. Surprisingly, MCAM also shifted the concentration-response curves of mu agonists in HEK cells in the absence of receptor reserve in a ligand-dependent manner. The shift in the [D-Ala2 ,N-MePhe4 ,Gly-ol5 ]-enkephalin (DAMGO) concentration-response curve by MCAM was insensitive to naloxone, suggesting that in addition to (pseudo)-irreversible orthosteric antagonism, MCAM acts allosterically to alter the affinity and/or intrinsic efficacy of mu agonists.


Asunto(s)
Cinamatos/farmacología , Derivados de la Morfina/farmacología , Antagonistas de Narcóticos/farmacología , Receptores Opioides mu/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Animales , AMP Cíclico/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Células HEK293 , Humanos , Ligandos , Masculino , Naloxona/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/metabolismo , Factores de Tiempo
12.
Neuropharmacology ; 151: 208-218, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30776373

RESUMEN

Receptor heteromers often display distinct pharmacological and functional properties compared to the individual receptor constituents. In this study, we compared the properties of the DOP-KOP heteromer agonist, 6'-guanidinonaltrindole (6'-GNTI), with agonists for DOP ([D-Pen2,5]-enkephalin [DPDPE]) and KOP (U50488) in peripheral sensory neurons in culture and in vivo. In primary cultures, all three agonists inhibited PGE2-stimulated cAMP accumulation as well as activated extracellular signal-regulated kinase 1/2 (ERK) with similar efficacy. ERK activation by U50488 was Gi-protein mediated but that by DPDPE or 6'-GNTI was Gi-protein independent (i.e., pertussis toxin insensitive). Brief pretreatment with DPDPE or U50488 resulted in loss of cAMP signaling, however, no desensitization occurred with 6'-GNTI pretreatment. In vivo, following intraplantar injection, all three agonists reduced thermal nociception. The dose-response curves for DPDPE and 6'-GNTI were monotonic whereas the curve for U50488 was an inverted U-shape. Inhibition of ERK blocked the downward phase and shifted the curve for U50488 to the right. Following intraplantar injection of carrageenan, antinociceptive responses to either DPDPE or U50488 were transient but could be prolonged with inhibitors of 12/15-lipoxgenases (LOX). By contrast, responsiveness to 6'-GNTI remained for a prolonged time in the absence of LOX inhibitors. Further, pretreatment with the 12/15-LOX metabolites, 12- and 15- hydroxyeicosatetraenoic acid, abolished responses to U50488 and DPDPE but had no effect on 6'-GNTI-mediated responses either in cultures or in vivo. Overall, these results suggest that DOP-KOP heteromers exhibit unique signaling and functional regulation in peripheral sensory neurons and may be a promising therapeutic target for the treatment of pain.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Células Receptoras Sensoriales/efectos de los fármacos , Animales , AMP Cíclico/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Mol Neurobiol ; 55(3): 2420-2430, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28361271

RESUMEN

Chronic neuropathic pain (CNP) is one of the most significant unmet clinical needs in modern medicine. Alongside the lack of effective treatments, there is a great deficit in the availability of objective diagnostic methods to reliably facilitate an accurate diagnosis. We therefore aimed to determine the feasibility of a simple diagnostic test by analysing differentially expressed genes in the blood of patients diagnosed with CNP of the lower back and compared to healthy human controls. Refinement of microarray expression data was performed using correlation analysis with 3900 human 2-colour microarray experiments. Selected genes were analysed in the dorsal horn of Sprague-Dawley rats after L5 spinal nerve ligation (SNL), using qRT-PCR and ddPCR, to determine possible associations with pathophysiological mechanisms underpinning CNP and whether they represent translational biomarkers of CNP. We found that of the 15 potential biomarkers identified, tissue inhibitor of matrix metalloproteinase-1 (TIMP1) gene expression was upregulated in chronic neuropathic lower back pain (CNBP) (p = 0.0049) which positively correlated (R = 0.68, p = ≤0.05) with increased plasma TIMP1 levels in this group (p = 0.0433). Moreover, plasma TIMP1 was also significantly upregulated in CNBP than chronic inflammatory lower back pain (p = 0.0272). In the SNL model, upregulation of the Timp1 gene was also observed (p = 0.0058) alongside a strong trend for the upregulation of melanocortin 1 receptor (p = 0.0847). Our data therefore highlights several genes that warrant further investigation, and of these, TIMP1 shows the greatest potential as an accessible and translational CNP biomarker.


Asunto(s)
Dolor Crónico/diagnóstico , Dolor Crónico/genética , Marcadores Genéticos/genética , Neuralgia/diagnóstico , Neuralgia/genética , Biosíntesis de Proteínas/genética , Animales , Dolor Crónico/terapia , Humanos , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/genética , Dolor de la Región Lumbar/terapia , Masculino , Neuralgia/terapia , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología , Ratas , Ratas Sprague-Dawley , Inhibidor Tisular de Metaloproteinasa-1/biosíntesis , Inhibidor Tisular de Metaloproteinasa-1/genética , Resultado del Tratamiento
14.
Artículo en Inglés | MEDLINE | ID: mdl-25988529

RESUMEN

Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.


Asunto(s)
Endocannabinoides/metabolismo , Dolor Nociceptivo/fisiopatología , Ratas Endogámicas WKY/fisiología , Ratas Sprague-Dawley/fisiología , Estrés Psicológico/fisiopatología , Amígdala del Cerebelo/fisiopatología , Animales , Modelos Animales de Enfermedad , Formaldehído , Lateralidad Funcional , Predisposición Genética a la Enfermedad , Calor , Masculino , Actividad Motora/fisiología , Células del Asta Posterior/fisiología , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas Endogámicas WKY/psicología , Ratas Sprague-Dawley/psicología , Resiliencia Psicológica , Especificidad de la Especie , Natación
15.
Prog Neurobiol ; 121: 1-18, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25010858

RESUMEN

The importance of the modulation of pain by emotion is now widely recognised. In particular, stress and anxiety, depending on their nature, duration and intensity, can exert potent, but complex, modulatory influences typified by either a reduction or exacerbation of the pain state. Exposure to either acute or chronic stress can increase pain responding under experimental conditions and exacerbate clinical pain disorders. There is evidence that exposure to chronic or repeated stress can produce maladaptive neurobiological changes in pathways associated with pain processing, resulting in stress-induced hyperalgesia (SIH). Preclinical studies of SIH are essential for our understanding of the mechanisms underpinning stress-related pain syndromes and for the identification of neural pathways and substrates, and the development of novel therapeutic agents for their clinical management. In this review, we describe clinical and pre-clinical models used to study SIH and discuss the neural substrates, neurotransmitters and neuromodulatory systems involved in this phenomenon.


Asunto(s)
Hiperalgesia/etiología , Estrés Psicológico/complicaciones , Estrés Psicológico/epidemiología , Animales , Encéfalo/patología , Humanos , Dolor/etiología , Dolor/patología , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda