Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542430

RESUMEN

To identify the vascular alteration by photodynamic therapy (PDT), the utilization of high-resolution, high-speed, and wide-field photoacoustic microscopy (PAM) has gained enormous interest. The rapid changes in vasculature during PDT treatment and monitoring of tumor tissue activation in the orthotopic pancreatic cancer model have received limited attention in previous studies. Here, a fully two-axes waterproof galvanometer scanner-based photoacoustic microscopy (WGS-PAM) system was developed for in vivo monitoring of dynamic variations in micro blood vessels due to PDT in an orthotopic pancreatic cancer mouse model. The photosensitizer (PS), Chlorin e6 (Ce6), was utilized to activate antitumor reactions in response to the irradiation of a 660 nm light source. Microvasculatures of angiogenesis tissue were visualized on a 40 mm2 area using the WGS-PAM system at 30 min intervals for 3 h after the PDT treatment. The decline in vascular intensity was observed at 24.5% along with a 32.4% reduction of the vascular density at 3 h post-PDT by the analysis of PAM images. The anti-vascularization effect was also identified with fluorescent imaging. Moreover, Ce6-PDT increased apoptotic and necrotic markers while decreasing vascular endothelial growth factor (VEGF) expression in MIA PaCa-2 and BxPC-3 pancreatic cancer cell lines. The approach of the WGS-PAM system shows the potential to investigate PDT effects on the mechanism of angiographic dynamics with high-resolution wide-field imaging modalities.


Asunto(s)
Clorofilidas , Neoplasias Pancreáticas , Fotoquimioterapia , Porfirinas , Ratones , Animales , Fotoquimioterapia/métodos , Microscopía , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Porfirinas/farmacología , Porfirinas/uso terapéutico
2.
Opt Express ; 31(2): 1258-1268, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785165

RESUMEN

The aim of this study was to develop an optically deviated focusing-based variable depth-of-focus (DOF) oriented optical coherence microscopy (OCM) system to improve the DOF in high-resolution and precise focused imaging. In this study, an approach of varying beam diameter using deviated focusing was employed in the sample arm to enhance the DOF and to confirm precise focusing in OCM imaging. The optically deviated focusing technique was used to vary the focal point and DOF by altering the sample arm beam. The efficacy of the variable DOF imaging approach utilizing an optimized sample arm was confirmed by tissue-level imaging, where OCM images with varying DOF were obtained using deviated focusing. Experimentally confirmed lateral resolution of 2.19 µm was sufficient for the precise non-invasive visualization of abnormalities of fruit specimens. Thus, the proposed variable DOF-OCM system can be an alternative for precisely focused, high-resolution, and variable DOF imaging by improving the DOF in minimum lateral resolution variation.

3.
Sensors (Basel) ; 24(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203080

RESUMEN

Characterizing plant material is crucial in terms of early disease detection, pest control, physiological assessments, and growth monitoring, which are essential parameters to increase production in agriculture and prevent unnecessary economic losses. The conventional methods employed to assess the aforementioned parameters have several limitations, such as invasive inspection, complexity, high time consumption, and costly features. In recent years, optical coherence tomography (OCT), which is an ultra-high resolution, non-invasive, and real-time unique image-based approach has been widely utilized as a significant and potential tool for assessing plant materials in numerous aspects. The obtained OCT cross-sections and volumetrics, as well as the amplitude signals of plant materials, have the capability to reveal vital information in both axial and lateral directions owing to the high resolution of the imaging system. This review discusses recent technological trends and advanced applications of OCT, which have been potentially adapted for numerous agricultural applications, such as non-invasive disease screening, optical signals-based growth speed detection, the structural analysis of plant materials, and microbiological discoveries. Therefore, this review offers a comprehensive exploration of recent advanced OCT technological approaches for agricultural applications, which provides insights into their potential to incorporate OCT technology into numerous industries.


Asunto(s)
Agricultura , Tomografía de Coherencia Óptica , Tecnología , Industrias , Psicoterapia
4.
J Prosthet Dent ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37957063

RESUMEN

This clinical report introduces an approach for detecting the supragingival finish line by penetrating the teeth and gingival tissue using optical coherence tomography (OCT) technology. This approach was used in 3 patients who underwent tooth preparation with a subgingival finish line. Consequently, the subgingival finish line, typically challenging to discern clearly in intraoral scans, was identifiable in the OCT image.

5.
Sensors (Basel) ; 21(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670358

RESUMEN

Whole-directional scanning methodology is required to observe distinctive features of an entire physical structure with a three dimensional (3D) visualization. However, the implementation of whole-directional scanning is challenging for conventional optical coherence tomography (OCT), which scans a limited portion of the sample by utilizing unidirectional and bidirectional scanning methods. Therefore, in this paper an integrated quad-scanner (QS) strategy-based OCT method was implemented to obtain the whole-directional volumetry of a sample by employing four scanning arms installed around the sample. The simultaneous and sequential image acquisition capabilities are the conceptual key points of the proposed QS-OCT method, and were implemented using four precisely aligned scanning arms and applied in a complementary way according to the experimental criteria. To assess the feasibility of obtaining whole-directional morphological structures, a roll of Scotch tape, an ex vivo mouse heart, and kidney specimens were imaged and independently obtained tissue images at different directions were delicately merged to compose the 3D volume data set. The results revealed the potential merits of QS-OCT-based whole-directional imaging, which can be a favorable inspection method for various discoveries that require the dynamic coordinates of the whole physical structure.

6.
Sensors (Basel) ; 21(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34300410

RESUMEN

The aim of this study was to quantitatively assess the residual adhesive on orthodontic ceramic bracket-removed dental surface. In orthodontic process, ceramic bracket was repeated debonding physically, then the adhesive remained on the dental surface. The residual adhesive caused a lack of adhesive strength between dental and ceramic bracket. Since commonly used adhesive in orthodontics is translucent, residual adhesive is hard to be detected with conventional microscopes. Therefore, 1310 nm center wavelength swept-source OCT system based on laboratory customized image processing algorithm was used for the precise detection of residual adhesive on tooth surface. The algorithm separates residual adhesive from dental surface by comparing the height of adjacent B-scan images, while providing color-scaled images emphasizing the thickness information of residual adhesive. Finally, the acquired results were compared with microscopic and adhesive remnant index scoring gold standards, while the comparison confirmed the potential merits and the improvements of the proposed method over gold standards.


Asunto(s)
Adhesivos , Soportes Ortodóncicos , Algoritmos , Cerámica , Ensayo de Materiales , Propiedades de Superficie , Tomografía de Coherencia Óptica
7.
Opt Lett ; 45(4): 865-868, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058491

RESUMEN

A large field-of-view and fast scanning of photoacoustic microscopy (PAM) relatively have been difficult to obtain due to the water-drowned structure of the system for the transmission of ultrasonic signals. Researchers have widely studied the achievement of a waterproof scanner for dynamic biological applications with a high-resolution and high signal-to-noise ratio. This Letter reports a novel, to the best of our knowledge, waterproof galvanometer scanner-based PAM system with a successfully attainable ${9.0}\;{\rm mm} \times {14.5}\;{\rm mm}$9.0mm×14.5mm scan region, amplitude scan rate of 40 kHz, and spatial resolution of 4.9 µm. The in vivo characterization of a mouse brain in intact-skull microvascular visualization demonstrated its capability in biomedical imaging and is anticipated to be an effective technique for various preclinical and clinical studies.


Asunto(s)
Conductividad Eléctrica , Fenómenos Mecánicos , Microscopía/instrumentación , Técnicas Fotoacústicas/instrumentación , Relación Señal-Ruido , Animales , Encéfalo/diagnóstico por imagen , Ratones , Agua
8.
Sensors (Basel) ; 20(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272646

RESUMEN

Depth-visualizing sensitivity can be degraded due to imperfect optical alignment and non-equidistant distribution of optical signals in the pixel array, which requires a measurement of the re-sampling process. To enhance this depth-visualizing sensitivity, reference and sample arm-channeled spectra corresponding to different depths using mirrors were obtained to calibrate the spectrum sampling prior to Fourier transformation. During the process, eight interferogram patterns corresponding to point spread function (PSF) signals at eight optical path length differences were acquired. To calibrate the spectrum, generated intensity points of the original interferogram were re-indexed towards a maximum intensity range, and these interferogram re-indexing points were employed to generate a new lookup table. The entire software-based process consists of eight consecutive steps. Experimental results revealed that the proposed method can achieve images with a high depth-visualizing sensitivity. Furthermore, the results validate the proposed method as a rapidly performable spectral calibration technique, and the real-time images acquired using our technique confirm the simplicity and applicability of the method to existing optical coherence tomography (OCT) systems. The sensitivity roll-off prior to the spectral calibration was measured as 28 dB and it was halved after the calibration process.

9.
Sensors (Basel) ; 20(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31877652

RESUMEN

Non-invasive characterization of micro-vibrations in the tympanic membrane (TM) excited by external sound waves is considered as a promising and essential diagnosis in modern otolaryngology. To verify the possibility of measuring and discriminating the vibrating pattern of TM, here we describe a micro-vibration measurement method of latex membrane resembling the TM. The measurements are obtained with an externally generated audio stimuli of 2.0, 2.2, 2.8, 3.1 and 3.2 kHz, and their respective vibrations based tomographic, volumetric and quantitative evaluations were acquired using optical Doppler tomography (ODT). The micro oscillations and structural changes which occurred due to diverse frequencies are measured with sufficient accuracy using a highly sensitive ODT system implied phase subtraction method. The obtained results demonstrated the capability of measuring and analyzing the complex varying micro-vibration of the membrane according to implied sound frequency.

10.
Sensors (Basel) ; 18(8)2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071634

RESUMEN

The non-destructive classification of plant materials using optical inspection techniques has been gaining much recent attention in the field of agriculture research. Among them, a near-infrared (NIR) imaging method called optical coherence tomography (OCT) has become a well-known agricultural inspection tool since the last decade. Here we investigated the non-destructive identification capability of OCT to classify diversely stained (with various staining agents) Capsicum annuum seed specimens of different cultivars. A swept source (SS-OCT) system with a spectral band of 1310 nm was used to image unstained control C. annuum seeds along with diversely stained Capsicum seeds, belonging to different cultivar varieties, such as C. annuum cv. PR Ppareum, C. annuum cv. PR Yeol, and C. annuum cv. Asia Jeombo. The obtained cross-sectional images were further analyzed for the changes in the intensity of back-scattered light (resulting due to dye pigment material and internal morphological variations) using a depth scan profiling technique to identify the difference among each seed category. The graphically acquired depth scan profiling results revealed that the control specimens exhibit less back-scattered light intensity in depth scan profiles when compared to the stained seed specimens. Furthermore, a significant back-scattered light intensity difference among each different cultivar group can be identified as well. Thus, the potential capability of OCT based depth scan profiling technique for non-destructive classification of diversely stained C. annum seed specimens of different cultivars can be sufficiently confirmed through the proposed scheme. Hence, when compared to conventional seed sorting techniques, OCT can offer multipurpose advantages by performing sorting of seeds in respective to the dye staining and provides internal structural images non-destructively.

11.
Appl Opt ; 56(11): 3023, 2017 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-28414359

RESUMEN

This note points out additional funding that was not added to Appl. Opt.56, D108 (2017)APOPAI0003-693510.1364/AO.56.00D108.

12.
Appl Opt ; 56(9): D108-D114, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28375377

RESUMEN

We developed a compact, wearable diagnostic imaging modality employing optical coherence tomography for in situ plant leaf quality assessments. This system is capable of diagnosing infected leaves at the initial disease stages. Our system is a versatile backpack-type imaging modality with a compact spectrometer, miniature computer, rechargeable power source, and handheld inspection probe. This method enhances real-time in situ specimen inspection through direct implementation of the imaging modality in a plantation. To evaluate the initial performance, field experiments were conducted in apple, pear, and persimmon plantations. Based on the obtained results, we can conclude that the developed imaging modality can be considered as a promising, efficient, convenient, and fast in situ inspection technique for various agricultural fields, which minimizes the limitations of complex tabletop inspection modalities.

13.
Appl Opt ; 56(9): D115-D119, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28375378

RESUMEN

A wide-field optical coherence tomography (OCT) probe was developed that adapts a diagonal-scanning scheme for three-dimensional (3D) in vivo imaging of the human tympanic membrane. The probe consists of a relay lens to enhance the lateral scanning range up to 7 mm. Motion artifacts that occur with the use of handheld probes were found to be decreased owing to the diagonal-scanning pattern, which crosses the center of the sample to facilitate entire 3D scans. 3D images could be constructed from a small number of two-dimensional OCT images acquired using the diagonal-scanning technique. To demonstrate the usefulness and performance of the developed system with the handheld probe, in vivo tympanic membranes of humans and animals were imaged in real time.

14.
Sensors (Basel) ; 17(5)2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28524105

RESUMEN

The structural analysis of nylon/graphene oxide (NY/GO) and polyetherblockamide/ trisilinolphenyl-polyhederal oligomeric silsesquioxane (PEBA/t-POSS) composites were performed using high-resolution spectral domain optical coherence tomography (SD-OCT). This optical technology revealed both cross-sectional, as well as sub-layer depth information of sample. The non-destructive real-time imaging demonstrated the nature of defects in the composites. The thickness and location of each defect point in the composites were measured using A-scan analysis on the SD-OCT images. The cross-sectional and volumetric images clearly demonstrate the effectiveness of SD-OCT for composite research, as well as the for industrial quality assurance of polymer materials.

15.
Sensors (Basel) ; 17(9)2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837058

RESUMEN

A handheld line information reader and a line information generator were developed for the efficient management of optical communication lines. The line information reader consists of a photo diode, trans-impedance amplifier, voltage amplifier, microcontroller unit, display panel, and communication modules. The line information generator consists of a laser diode, laser driving circuits, microcontroller unit, and communication modules. The line information reader can detect the optical radiation field of the test line by bending the optical fiber. To enhance the sensitivity of the line information reader, an additional lens was used with a focal length of 4.51 mm. Moreover, the simulation results obtained through BeamPROP® software from Synopsys, Inc. demonstrated a stronger optical radiation field of the fiber due to a longer transmission wavelength and larger bending angle of the fiber. Therefore, the developed devices can be considered as useful tools for the efficient management of optical communication lines.

16.
Sensors (Basel) ; 17(8)2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28817086

RESUMEN

The study of mosquitoes and analysis of their behavior are of crucial importance in the on-going efforts to control the alarming increase in mosquito-borne diseases. Furthermore, a non-destructive and real-time imaging technique to study the anatomical features of mosquito specimens can greatly aid the study of mosquitoes. In this study, we demonstrate the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes. The anatomical features of An. sinensis head, thorax, and abdominal regions, along with the morphology of internal structures, such as foregut, midgut, and hindgut, were studied using OCT imaging. Two-dimensional and three-dimensional OCT images, used in conjunction with histological images, proved useful for anatomical analysis of mosquito specimens. By presenting this work as an initial study, we demonstrate the applicability of OCT for future mosquito-related entomological research, and also in identifying changes in mosquito anatomical structure.


Asunto(s)
Culicidae , Animales , Imagenología Tridimensional , Tomografía de Coherencia Óptica
17.
Sensors (Basel) ; 17(12)2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29231871

RESUMEN

We demonstrate that optical coherence tomography (OCT) is a plausible optical tool for in vivo detection of plant seeds and its morphological changes during growth. To investigate the direct impact of salt stress on seed germination, the experiment was conducted using Capsicum annuum seeds that were treated with different molar concentrations of NaCl. To determine the optimal concentration for the seed growth, the seeds were monitored for nine consecutive days. In vivo two-dimensional OCT images of the treated seeds were obtained and compared with the images of seeds that were grown using sterile distilled water. The obtained results confirm the feasibility of using OCT for the proposed application. Normalized depth profile analysis was utilized to support the conclusions.


Asunto(s)
Capsicum , Germinación , Semillas , Cloruro de Sodio , Agua
18.
Sensors (Basel) ; 16(11)2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27869659

RESUMEN

We report a wavelength swept laser-based full-field optical coherence tomography for measuring the surfaces and thicknesses of refractive and reflective samples. The system consists of a galvo filter-based wavelength swept laser and a simple Michelson interferometer. Combinations of the reflective and refractive samples are used to demonstrate the performance of the system. By synchronizing the camera with the source, the cross-sectional information of the samples can be seen after each sweep of the swept source. This system can be effective for the thickness measurement of optical thin films as well as for the depth investigation of samples in industrial applications. A resolution target with a glass cover slip and a step height standard target are imaged, showing the cross-sectional and topographical information of the samples.

19.
Sensors (Basel) ; 16(12)2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27929440

RESUMEN

The initial detection of dental caries is an essential biomedical requirement to barricade the progression of caries and tooth demineralization. The objective of this study is to introduce an optical frequency-domain imaging technique based quantitative evaluation method to calculate the volume and thickness of enamel residual, and a quantification method was developed to evaluate the total intensity fluctuation in depth direction owing to carious lesions, which can be favorable to identify the progression of dental caries in advance. The cross-sectional images of the ex vivo tooth samples were acquired using 1.3 µm spectral domain optical coherence tomography system (SD-OCT). Moreover, the advantages of the proposed method over the conventional dental inspection methods were compared to highlight the potential capability of OCT. As a consequence, the threshold parameters obtained through the developed method can be used as an efficient investigating technique for the initial detection of demineralization.


Asunto(s)
Caries Dental/diagnóstico por imagen , Caries Dental/diagnóstico , Progresión de la Enfermedad , Imagen Óptica/métodos , Fotones , Tomografía de Coherencia Óptica/métodos , Algoritmos , Niño , Esmalte Dental/química , Femenino , Humanos , Imagenología Tridimensional , Masculino , Diente/diagnóstico por imagen , Diente/patología , Desmineralización Dental
20.
Sensors (Basel) ; 16(10)2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27690043

RESUMEN

An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda