Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Anal Chem ; 96(2): 694-700, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38153912

RESUMEN

In the event of a chemical attack, the rapid identification of unknown chemical agents is critical for an effective emergency response and treatment of victims. However, identifying unknown compounds is difficult, particularly when relying on traditional methods such as gas and liquid chromatography-mass spectrometry (GC-MS, LC-MS). In this study, we developed a density functional theory and spectroscopy integrated identification method (D-SIIM) for the possible detection of unknown or unidentified terrorist materials, specifically chemical warfare agents (CWAs). The D-SIIM uses a combination of GC-MS, nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, and quantum chemical calculation-based NMR/IR predictions to identify potential CWA candidates based on their chemical signatures. Using D-SIIM, we successfully verified the presence of blister and nerve agent simulants in samples by excluding other compounds (ethyl propyl sulfide and methylphosphonic acid), which were predicted to be candidates with high probability by GC-MS. The findings of this study demonstrate that the D-SIIM can detect substances that are likely present in CWA mixtures and can be used to identify unknown terrorist chemicals.

2.
Langmuir ; 40(14): 7456-7462, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38546877

RESUMEN

The primary constituents of honeybee venom, melittin and phospholipase A2 (PLA2), display toxin synergism in which the PLA2 activity is significantly enhanced by the presence of melittin. It has been shown previously that this is accomplished by the disruption in lipid packing, which allows PLA2 to become processive on the membrane surface. In this work, we show that melittin is capable of driving miscibility phase transition in giant unilamellar vesicles (GUVs) and that it raises the miscibility transition temperature (Tmisc) in a concentration-dependent manner. The induced phase separation enhances the processivity of PLA2, particularly at its boundaries, where a substantial difference in domain thickness creates a membrane discontinuity. The catalytic action of PLA2, in response, induces changes in the membrane, rendering it more conducive to melittin binding. This, in turn, facilitates further lipid phase separation and eventual vesicle lysis. Overall, our results show that melittin has powerful membrane-altering capabilities that activate PLA2 in various membrane contexts. More broadly, they exemplify how this biochemical system actively modulates and capitalizes on the spatial distribution of membrane lipids to efficiently achieve its objectives.


Asunto(s)
Venenos de Abeja , Meliteno , Meliteno/farmacología , Liposomas Unilamelares , Fosfolipasas A2 , Lípidos de la Membrana
3.
Analyst ; 149(4): 1068-1073, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38265242

RESUMEN

Signal amplification by reversible exchange hyperpolarization explores the chemical structure and kinetic properties of nicotinamide derivatives. N-Benzyl nicotinamide and nicotinic acid hydrazide compounds display relatively fast dissociation rates of approximately 7-8 s-1 and long proton T1 relaxation times of 5-20 s, respectively. Consequently, these substrates exhibit remarkable signal enhancements, reaching approximately 175 and 102 fold, respectively, underscoring the efficacy of the hyperpolarization technique in elucidating the behavior of these compounds.

4.
Phys Chem Chem Phys ; 26(2): 1352-1363, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38108402

RESUMEN

Several hole-transporting materials (HTMs) have been designed by incorporating different types of π-conjugation group such as long chain aliphatic alkenes and condensed aromatic rings of benzene and thiophene and their derivatives on both sides between the planar core and donor of a reference HTM. Various electronic, optical, and dynamic properties have been calculated by using DFT, TDDFT, and Marcus theory. In this study, all the designed HTMs show a lower HOMO energy level and match well with the perovskite absorbers. Inserting condensed rings results in better hole mobility compared to aliphatic double bonds. It is found that the charge transfer integral is the dominant factor which mainly influences the hole mobility in our studied HTMs. Other factors such as hole reorganization energy, hole hopping rate, and centroid distance have a minor effect on hole mobility. Thus, this study is expected to provide guidance for the design and synthesis of new HTMs with increased hole mobility.

5.
RSC Adv ; 14(2): 1051-1055, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174243

RESUMEN

Metal-amino acid complexes are important compounds for the human body. Their nutritional value and anticancer, antibacterial, and catalytic properties are the focus of several studies. Density functional theory (DFT) can be used to predict their properties by optimizing their structures and performing electron population analyses. However, conventional computational methods cannot adequately determine the parameters of polymeric metal-amino acid complexes. Therefore, intermolecular interactions of polymers must be considered to correctly predict the properties of metal-amino acid and related metal complexes. In this study, different DFT protocols were used to acquire the infrared spectra and determine interatomic distances of two zinc-amino acid complexes, Zn(Gly)2 and Zn(Met)2. The results were compared to spectroscopic and X-ray crystallographic data, revealing that the M06 and M06-L functionals and the 6-311++G(d,p) basis set produced the smallest computational errors. Our results provide a foundation for future theoretical studies on other metal-amino acid and metal-organic complexes.

6.
ACS Chem Biol ; 19(8): 1786-1793, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39037001

RESUMEN

The oxidation of the cellular membrane through lipid peroxidation (LPO) is linked to aging and disease. Despite the physiological importance, the chemical mechanisms underlying LPO and oxidative reactions in membranes in general remain incompletely understood, and challenges exist in translating LPO inhibitor efficacies from in vitro to in vivo. The complexity of LPO, including multiple oxidation reactions in complex membrane environments and the difficulty in quantifying reaction kinetics, underlies these difficulties. In this work, we developed a robust and straightforward method for quantifying the oxidation rate kinetics of fluorescent molecules and determined the oxidation kinetics of widely fluorophores used as indicators of membrane LPO, diphenylhexatriene (DPH), BODIPY-C11, and Liperfluo. The measurement is initiated by lipoxygenase, which provides chemical specificity and enables a straightforward interpretation of oxidation kinetics. Our results reveal that the membrane composition significantly impacts the observed kinetics oxidation in DPH and BODIPY-C11 but not Liperfluo. Reaction mechanisms for their lipid peroxide-induced oxidation are proposed. This work provides a foundation for the quantitative analysis of LPO with fluorescence and extricating the complexity of oxidation reactions within membranes.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes , Peroxidación de Lípido , Oxidación-Reducción , Cinética , Colorantes Fluorescentes/química , Compuestos de Boro/química , Membrana Celular/metabolismo , Difenilhexatrieno/química , Difenilhexatrieno/análogos & derivados , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Humanos , Lipooxigenasa/metabolismo
7.
ChemSusChem ; : e202401257, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110600

RESUMEN

The development of greener and more sustainable synthesis processes for manufacturing commodity chemicals is of great importance. The majority of current phenol production methods involve harsh reaction conditions with high energy consumption, causing severe environmental pollution. In this study, we present a novel approach for the decarboxylation of hydroxybenzoic acids (HBAs) to phenol using a choline chloride-urea (ChCl-urea) deep eutectic solvent (DES). Our study reveals the remarkable dual performance of ChCl-urea both as a catalyst and solvent for the decarboxylation of HBA, resulting in a high phenol yield (94 mol%) under mild reaction conditions. The proposed reaction pathway, established through a combination of experiments and computational simulations, enhances our understanding of this process. The recyclability of the DES system during decarboxylation was also assessed. Our findings demonstrate that the integration of DES into conventional chemical processes can pave the way for sustainable manufacturing, exemplifying a novel approach for producing phenol from abundant natural resources using designer solvents.

8.
Waste Manag ; 174: 411-419, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103351

RESUMEN

To achieve a sustainable and circular economy, developing effective plastic recycling methods is essential. Despite advances in the chemical recycling of plastic waste, modern industries require highly efficient and sustainable solutions to address environmental problems. In this study, we propose an efficient glycolysis strategy for post-consumer polyethylene terephthalate (PET) using deep eutectic solvents (DESs) to produce bis(2-hydroxyethyl) terephthalate (BHET) with high selectivity. Choline chloride (ChCl)- and urea-based DESs were synthesized using various metal salts and were tested for the glycolysis of PET waste; ChCl-Zn(OAc)2 exhibited the best performance. The DES-containing solvent system afforded a complete PET conversion, producing BHET at a high yield (91.6%) under optimal reaction conditions. The degradation mechanism of PET and its interaction with DESs were systematically investigated using density functional theory-based calculations. Furthermore, an intuitive machine learning model was developed to predict the PET conversion and BHET selectivity for different DES compositions. Our findings demonstrate that the DES-catalyzed glycolysis of post-consumer PET could enable the development of a sustainable chemical recycling process, providing insights to identify the new design of DESs for plastic decomposition.


Asunto(s)
Disolventes Eutécticos Profundos , Tereftalatos Polietilenos , Solventes/química , Tereftalatos Polietilenos/química , Glucólisis , Catálisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda