Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Nat Genet ; 23(1): 67-70, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10471501

RESUMEN

The initial stages of pancreatic development occur early during mammalian embryogenesis, but the genes governing this process remain largely unknown. The homeodomain protein Pdx1 is expressed in the developing pancreatic anlagen from the approximately 10-somite stage, and mutations in the gene Pdx1 prevent the development of the pancreas. The initial stages of pancreatic development, however, still occur in Pdx1-deficient mice. Hlxb9 (encoding Hb9; ref. 6) is a homeobox gene that in humans has been linked to dominant inherited sacral agenesis and we show here that Hb9 is expressed at early stages of mouse pancreatic development and later in differentiated beta-cells. Hlxb9 has an essential function in the initial stages of pancreatic development. In absence of Hlxb9 expression, the dorsal region of the gut epithelium fails to initiate a pancreatic differentiation program. In contrast, the ventral pancreatic endoderm develops but exhibits a later and more subtle perturbation in beta-cell differentiation and in islet cell organization. Thus, dorsally Hlxb9 is required for specifying the gut epithelium to a pancreatic fate and ventrally for ensuring proper endocrine cell differentiation.


Asunto(s)
Genes Homeobox , Proteínas de Homeodominio/genética , Páncreas/anomalías , Factores de Transcripción/genética , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Transportador de Glucosa de Tipo 2 , Proteínas de Homeodominio/metabolismo , Homocigoto , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes , Proteínas de Transporte de Monosacáridos/metabolismo , Notocorda/metabolismo , Páncreas/embriología , Recombinación Genética , Factores de Tiempo , Transactivadores/genética , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(28): 11594-9, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19553217

RESUMEN

Many cell-cell adhesive events are mediated by the dimerization of cadherin proteins presented on apposing cell surfaces. Cadherin-mediated processes play a central role in the sorting of cells into separate tissues in vivo, but in vitro assays aimed at mimicking this behavior have yielded inconclusive results. In some cases, cells that express different cadherins exhibit homotypic cell sorting, forming separate cell aggregates, whereas in other cases, intermixed aggregates are formed. A third pattern is observed for mixtures of cells expressing either N- or E-cadherin, which form distinct homotypic aggregates that adhere to one another through a heterotypic interface. The molecular basis of cadherin-mediated cell patterning phenomena is poorly understood, in part because the relationship between cellular adhesive specificity and intermolecular binding free energies has not been established. To clarify this issue, we have measured the dimerization affinities of N-cadherin and E-cadherin. These proteins are similar in sequence and structure, yet are able to mediate homotypic cell patterning behavior in a variety of tissues. N-cadherin is found to form homodimers with higher affinity than does E-cadherin and, unexpectedly, the N/E-cadherin heterophilic binding affinity is intermediate in strength between the 2 homophilic affinities. We can account for observed cell aggregation behaviors by using a theoretical framework that establishes a connection between molecular affinities and cell-cell adhesive specificity. Our results illustrate how graded differences between different homophilic and heterophilic cadherin dimerizaton affinities can result in homotypic cell patterning and, more generally, show how proteins that are closely related can, nevertheless, be responsible for highly specific cellular adhesive behavior.


Asunto(s)
Cadherinas/metabolismo , Adhesión Celular/fisiología , Dimerización , Modelos Moleculares , Unión Proteica , Animales , Área Bajo la Curva , Células CHO , Cadherinas/química , Agregación Celular/fisiología , Cricetinae , Cricetulus
3.
J Cell Biol ; 91(1): 142-52, 1981 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7298714

RESUMEN

Serotonin neurons in 14-d embryonic rat brain stem were identified by peroxidase-antiperoxidase immunocytochemistry with an affinity-purified antiserotonin antibody. Brain-stem tissue was dissected from 14- or 15-d embryonic rats, dissociated and grown in cell culture for up to 5 wk, and serotonin neurons were identified by immunocytochemistry. Within 24 h of plating, serotonin immunoreactivity was present in 3.3% of neurons. Immunoreactivity in neuronal cell bodies decreased with time, whereas staining of processes increased. The number of serotonin-immunoreactive neurons remained constant at 3-5% over the first 14 d in culture. From 14 to 28 d, the total number of neurons decreased with little change in the number of serotonin neurons, such that, by day 28 in culture, up to 36% of surviving neurons exhibited serotonin immunoreactivity. Similar percentages of cultured brain stem neurons accumulating 3H-serotonin were identified by autoradiography. Uptake was abolished by the serotonin-uptake inhibitor, clomipramine, but was unaffected by excess norepinephrine, or by the norepinephrine-uptake inhibitor, maprotiline. Synthesis of 3H-serotonin was detected after incubation of cultures with 3H-tryptophan, and newly synthesized serotonin was released by potassium depolarization in a calcium-dependent manner. More than 95% of serotonin neurons were destroyed after incubation of cultures with 5,6-dihydroxytryptamine. Brain-stem cultures contained virtually no neurons with the ability to accumulate 3H-norepinephrine or 3H-dopamine. Approximately 40% of brain-stem neurons were labeled with gamma-aminobutyric acid (3H-GABA). However, there was almost no overlap in the surface area of neurons accumulating 3H-serotonin or 3H-GABA.


Asunto(s)
Tronco Encefálico/embriología , Serotonina/fisiología , Animales , Tronco Encefálico/citología , Células Cultivadas , Neuronas/metabolismo , Ratas , Serotonina/biosíntesis , Ácido gamma-Aminobutírico/metabolismo
4.
Science ; 274(5290): 1115-23, 1996 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8895454

RESUMEN

The generation of distinct neuronal cell types in appropriate numbers and at precise positions underlies the assembly of neural circuits that encode animal behavior. Despite the complexity of the vertebrate central nervous system, advances have been made in defining the principles that control the diversification and patterning of its component cells. A combination of molecular genetic, biochemical, and embryological assays has begun to reveal the identity and mechanism of action of molecules that induce and pattern neural tissue and the role of transcription factors in establishing generic and specific neuronal fates. Some of these advances are discussed here, focusing on the spinal cord as a model system for analyzing the molecular control of central nervous system development in vertebrates.


Asunto(s)
Tipificación del Cuerpo , Inducción Embrionaria , Neuronas/citología , Médula Espinal/embriología , Animales , Diferenciación Celular , Ectodermo/citología , Ectodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Neuronas/fisiología , Notocorda/fisiología , Transducción de Señal , Médula Espinal/citología , Factores de Transcripción/fisiología
5.
Science ; 242(4879): 692-9, 1988 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-3055291

RESUMEN

Over the past decade, new insights have been obtained into the cellular strategies and molecular mechanisms that guide axons to their targets in the developing vertebrate nervous system. Axons select pathways by recognizing specific cues in their environment. These cues include cell surface and extracellular matrix molecules that mediate cell and substrate adhesion and axon fasciculation, molecules with contact-dependent inhibitory properties, and diffusible tropic factors. Several guidance cues may operate in a coordinated way to generate the distinct axonal trajectories of individual neurons.


Asunto(s)
Axones/fisiología , Sistema Nervioso/crecimiento & desarrollo , Animales , Antígenos de Superficie/fisiología , Adhesión Celular , Moléculas de Adhesión Celular , Quimiotaxis , Inhibición de Contacto , Matriz Extracelular/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Sistema Nervioso/citología
6.
Science ; 244(4908): 1057-62, 1989 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-2727693

RESUMEN

Neurotransmitter receptors are usually restricted to neuronal cells, but the signaling pathways activated by these receptors are widely distributed in both neural and non-neural cells. The functional consequences of activating a brain-specific neurotransmitter receptor, the serotonin 5HT1c receptor, in the unnatural environment of a fibroblast were examined. Introduction of functional 5HT1c receptors into NIH 3T3 cells results, at high frequency, in the generation of transformed foci. Moreover, the generation and maintenance of transformed foci requires continued activation of the serotonin receptor. In addition, the injection of cells derived from transformed foci into nude mice results in the generation of tumors. The serotonin 5HT1c receptor therefore functions as a protooncogene when expressed in NIH 3T3 fibroblasts.


Asunto(s)
Transformación Celular Neoplásica , Regulación de la Expresión Génica , Receptores de Serotonina/genética , Animales , Calcio/farmacología , División Celular , Línea Celular , Clonación Molecular , Fibroblastos/metabolismo , Vectores Genéticos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Receptores de Serotonina/fisiología , Sistemas de Mensajero Secundario , Serotonina/farmacología , Serotonina/fisiología , Transfección
7.
Science ; 241(4865): 558-64, 1988 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-3399891

RESUMEN

Neurons that release serotonin as a neurotransmitter project to most regions of the central and peripheral nervous system and mediate diverse neural functions. The physiological effects of serotonin are initiated by the activation of multiple, distinct receptor subtypes. Cloning in RNA expression vectors was combined with a sensitive electrophysiological assay in Xenopus oocytes in order to isolate a functional cDNA clone encoding the 5HTlc serotonin receptor. Injection of RNA transcribed in vitro from this clone into Xenopus oocytes elicits serotonin sensitivity. Mouse fibroblasts transformed with this clone bind serotonin agonists and antagonists and exhibit an increase in intracellular Ca2+ concentrations in response to serotonin. The sequence of the 5HTlc receptor reveals that it belongs to the family of G protein-coupled receptors, which are thought to traverse the cytoplasmic membrane seven times. Moreover, in situ hybridization and RNA blot analysis indicate that the 5HTlc receptor is expressed in neurons in many regions of the central nervous system and suggest that this subclass of receptor may mediate many of the central actions of serotonin.


Asunto(s)
Receptores de Serotonina/genética , Serotonina/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN/genética , Fibroblastos/fisiología , Regulación de la Expresión Génica , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Oocitos/fisiología , Fosfoproteínas/fisiología , Ratas , Xenopus laevis
8.
Science ; 256(5063): 1555-60, 1992 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-1350865

RESUMEN

Motor neurons in the embryonic chick spinal cord express a homeobox gene, Islet-1, soon after their final mitotic division and before the appearance of other differentiated motor neuron properties. The expression of Islet-1 by neural cells is regulated by inductive signals from the floor plate and notochord. These results establish Islet-1 as the earliest marker of developing motor neurons. The molecular nature of the Islet-1 protein suggests that it may be involved in the establishment of motor neuron fate.


Asunto(s)
Genes Homeobox , Neuronas Motoras/fisiología , Médula Espinal/embriología , Animales , Diferenciación Celular , Embrión de Pollo , Inducción Embrionaria , Expresión Génica , Técnicas para Inmunoenzimas , Neuronas Motoras/citología , Notocorda/fisiología
9.
Science ; 206(4417): 481-3, 1979 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-228392

RESUMEN

A single intrathecal injection of capsaicin depletes substance P from primary sensory neurons and causes a prolonged increase in the thermal and chemical pain thresholds of the rat but no apparent change in responses to noxious mechanical stimuli.


Asunto(s)
Capsaicina/farmacología , Ácidos Grasos Insaturados/farmacología , Dolor/fisiopatología , Médula Espinal/metabolismo , Sustancia P/metabolismo , Animales , Calor , Inyecciones Espinales , Movimiento/efectos de los fármacos , Nociceptores/efectos de los fármacos , Ratas , Sustancia P/administración & dosificación , Transmisión Sináptica/efectos de los fármacos
10.
Neuron ; 19(3): 487-502, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9331343

RESUMEN

The early patterning of the vertebrate central nervous system involves the generation of progenitor cells with distinct fates at rostral and caudal levels of the neuraxis. We provide evidence that the assignment of early rostrocaudal differences in progenitor cell properties is established by spatial restrictions in the signaling properties of the paraxial mesoderm and epidermal ectoderm. Caudal level paraxial mesoderm secretes a factor, distinct from retinoic acid or fibroblast growth factors (FGFs), that can impose caudal fates on prospective anterior proencephalic progenitors. The caudalizing activity of the paraxial mesoderm can, however, be induced by FGF signaling. The distinct properties of cells at rostral and caudal levels of the neural plate appear to depend, in addition, on the early exclusion of bone morphogenetic proteins (BMPs) from rostral level epidermal ectoderm. Thus, differences in the signaling properties of cell groups that flank the neural plate appear to contribute to the early rostrocaudal identity of neural cells, distinguishing progenitor cells at prospective anterior proencephalic regions from those at more caudal levels of the neuraxis.


Asunto(s)
Comunicación Celular/fisiología , Mesodermo/citología , Cresta Neural/citología , Médula Espinal/embriología , Telencéfalo/embriología , Transactivadores , Animales , Proteínas Morfogenéticas Óseas/fisiología , Células COS/química , Células COS/citología , Diferenciación Celular/fisiología , Embrión de Pollo , Ectodermo/citología , Ectodermo/fisiología , Inducción Embrionaria/efectos de los fármacos , Inducción Embrionaria/fisiología , Células Epidérmicas , Epidermis/embriología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proteínas Hedgehog , Mesodermo/efectos de los fármacos , Mesodermo/fisiología , Proteínas/fisiología , Médula Espinal/citología , Células Madre/citología , Células Madre/fisiología , Telencéfalo/citología , Transfección
11.
Neuron ; 31(5): 773-89, 2001 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-11567616

RESUMEN

Within the developing vertebrate nervous system, the mechanisms that coordinate neuronal subtype identity with generic features of neuronal differentiation are poorly defined. We show here that a bHLH protein, Olig2, is expressed selectively by motor neuron progenitors and has a key role in specifying the subtype identity and pan-neuronal properties of developing motor neurons. The role of Olig2 in the specification of motor neuron subtype identity depends on regulatory interactions with progenitor homeodomain proteins, whereas its role in promoting pan-neuronal properties is associated with expression of another bHLH protein, Ngn2. Both aspects of Olig2 function appear to depend on its activity as a transcriptional repressor. Together, these studies show that Olig2 has a critical role in integrating diverse features of motor neuron differentiation in the developing spinal cord.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Secuencias Hélice-Asa-Hélice/genética , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/genética , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Tipificación del Cuerpo/genética , Ciclo Celular/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Embrión de Pollo , Feto , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Estructura Terciaria de Proteína/genética , Células Madre/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética/fisiología
12.
Neuron ; 32(6): 997-1012, 2001 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-11754833

RESUMEN

Subclasses of motor neurons are generated at different positions along the rostrocaudal axis of the spinal cord. One feature of the rostrocaudal organization of spinal motor neurons is a position-dependent expression of Hox genes, but little is known about how this aspect of motor neuron subtype identity is assigned. We have used the expression profile of Hox-c proteins to define the source and identity of patterning signals that impose motor neuron positional identity along the rostrocaudal axis of the spinal cord. We provide evidence that the convergent activities of FGFs, Gdf11, and retinoid signals originating from Hensen's node and paraxial mesoderm establish and refine the Hox-c positional identity of motor neurons in the developing spinal cord.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Morfogenéticas Óseas/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proteínas de Homeodominio/genética , Neuronas Motoras/fisiología , Médula Espinal/citología , Tretinoina/farmacología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/fisiología , Células Cultivadas , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Diferenciación de Crecimiento , Cobayas , Mesodermo/fisiología , Ratones , Datos de Secuencia Molecular , Neuronas Motoras/citología , Organizadores Embrionarios/fisiología , Ratas , Transducción de Señal/fisiología , Médula Espinal/embriología
13.
Neuron ; 23(4): 659-74, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10482234

RESUMEN

The homeobox gene Hb9, like its close relative MNR2, is expressed selectively by motor neurons (MNs) in the developing vertebrate CNS. In embryonic chick spinal cord, the ectopic expression of MNR2 or Hb9 is sufficient to trigger MN differentiation and to repress the differentiation of an adjacent population of V2 interneurons. Here, we provide genetic evidence that Hb9 has an essential role in MN differentiation. In mice lacking Hb9 function, MNs are generated on schedule and in normal numbers but transiently acquire molecular features of V2 interneurons. The aberrant specification of MN identity is associated with defects in the migration of MNs, the emergence of the subtype identities of MNs, and the projection of motor axons. These findings show that HB9 has an essential function in consolidating the identity of postmitotic MNs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Neuronas Motoras/fisiología , Médula Espinal/embriología , Factores de Transcripción/genética , Animales , Axones/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Inmunohistoquímica , Hibridación in Situ , Interneuronas/fisiología , Proteínas con Homeodominio LIM , Ratones , Ratones Transgénicos , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Proteínas del Tejido Nervioso/biosíntesis , Médula Espinal/citología , Médula Espinal/fisiología , Transgenes
14.
Neuron ; 23(4): 689-702, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10482236

RESUMEN

In the chick embryo, neural cells acquire midbrain, hindbrain, and spinal cord character over a approximately 6 hr period during gastrulation. The convergent actions of four signals appear to specify caudal neural character. Fibroblast growth factors (FGFs) and a paraxial mesoderm-caudalizing (PMC) activity are involved, but neither signal is sufficient to induce any single region. FGFs act indirectly by inducing mesoderm that expresses PMC and retinoid activity and also directly on prospective neural cells, in combination with PMC activity and a rostralizing signal, to induce midbrain character. Hindbrain character emerges from cells that possess the potential to acquire midbrain character upon exposure to higher levels of PMC activity. Induction of spinal cord character appears to involve PMC and retinoid activities.


Asunto(s)
Gástrula/fisiología , Mesencéfalo/citología , Mesencéfalo/embriología , Rombencéfalo/citología , Rombencéfalo/embriología , Médula Espinal/citología , Médula Espinal/embriología , Animales , Embrión de Pollo , Factores de Crecimiento de Fibroblastos/metabolismo , Inmunohistoquímica , Hibridación in Situ , Mesodermo/citología , Modelos Biológicos , Retina/citología , Retina/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
Neuron ; 1(2): 105-16, 1988 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-3272160

RESUMEN

The identification of surface proteins restricted to subsets of embryonic axons and growth cones may provide information on the mechanisms underlying axon fasciculation and pathway selection in the vertebrate nervous system. We describe here the characterization of a 135 kd cell surface glycoprotein, TAG-1, that is expressed transiently on subsets of embryonic spinal cord axons and growth cones. TAG-1 is immunochemically distinct from the cell adhesion molecules N-CAM and L1 (NILE) and is expressed on commissural and motor neurons over the period of initial axon extension. Moreover, TAG-1 and L1 appear to be segregated on different segments of the same embryonic spinal axons. These observations provide evidence that axonal guidance and pathway selection in vertebrates may be regulated in part by the transient and selective expression of distinct surface glycoproteins on subsets of developing neurons.


Asunto(s)
Axones/metabolismo , Desarrollo Embrionario y Fetal , Regulación de la Expresión Génica , Glicoproteínas de Membrana/metabolismo , Médula Espinal/metabolismo , Animales , Células Cultivadas , Inmunohistoquímica , Peso Molecular , Ratas , Médula Espinal/embriología
16.
Neuron ; 12(3): 675-90, 1994 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7512353

RESUMEN

Subsets of axons in the embryonic nervous system transiently express the glycoprotein TAG-1, a member of the subfamily of immunoglobulin (Ig)-like proteins that contain both C2 class Ig and fibronectin type III domains. TAG-1 is attached to the cell surface by a glycosylphosphatidylinositol linkage and is secreted by neurons. In vitro studies have shown that substrate-bound TAG-1 promotes neurite outgrowth. We have examined the nature of axonal receptors that mediate the neurite-outgrowth promoting properties of TAG-1. Although TAG-1 can mediate homophilic binding, neurite outgrowth on a substrate of TAG-1 does not depend on the presence of TAG-1 on the axonal surface. Instead, neurite outgrowth on TAG-1 is inhibited by polyclonal antibodies directed against L1 and, independently, by polyclonal and monoclonal antibodies against beta 1-containing integrins. These results provide evidence that TAG-1 can interact with cell surfaces in both a homophilic and heterophilic manner and suggest that neurite extension on TAG-1 requires the function of both integrins and an L1-like molecule.


Asunto(s)
Integrinas/fisiología , Glicoproteínas de Membrana/farmacología , Neuritas/metabolismo , Neuritas/fisiología , Animales , Anticuerpos/inmunología , Moléculas de Adhesión Celular Neuronal/farmacología , Contactina 2 , Proteínas de la Matriz Extracelular/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/ultraestructura , Integrinas/inmunología , Complejo de Antígeno L1 de Leucocito , Glicoproteínas de Membrana/inmunología , Proteínas del Tejido Nervioso/farmacología , Neuritas/efectos de los fármacos , Ratas , Especificidad por Sustrato , Tenascina
17.
Neuron ; 31(5): 743-55, 2001 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-11567614

RESUMEN

Specification of neuronal fate in the vertebrate central nervous system depends on the profile of transcription factor expression by neural progenitor cells, but the precise roles of such factors in neurogenesis remain poorly characterized. Two closely related transcriptional repressors, Nkx6.2 and Nkx6.1, are expressed by progenitors in overlapping domains of the ventral spinal cord. We provide genetic evidence that differences in the level of repressor activity of these homeodomain proteins underlies the diversification of interneuron subtypes, and provides a fail-safe mechanism during motor neuron generation. A reduction in Nkx6 activity further permits V0 neurons to be generated from progenitors that lack homeodomain proteins normally required for their generation, providing direct evidence for a model in which progenitor homeodomain proteins direct specific cell fates by actively suppressing the expression of transcription factors that direct alternative fates.


Asunto(s)
Diferenciación Celular/genética , Sistema Nervioso Central/embriología , Proteínas de Homeodominio/genética , Interneuronas/citología , Neuronas Motoras/citología , Proteínas Represoras/genética , Células Madre/citología , Factores de Transcripción/genética , Animales , Linaje de la Célula/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Embrión de Pollo , Proteínas del Ojo , Feto , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Interneuronas/metabolismo , Ratones , Ratones Noqueados/embriología , Ratones Noqueados/genética , Ratones Noqueados/metabolismo , Neuronas Motoras/metabolismo , Factor de Transcripción PAX6 , Factor de Transcripción PAX7 , Factores de Transcripción Paired Box , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo , Células Madre/metabolismo , Transcripción Genética/fisiología , Proteínas de Pez Cebra
18.
Neuron ; 29(2): 367-84, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11239429

RESUMEN

Spinal interneurons help to coordinate motor behavior. During spinal cord development, distinct classes of interneurons are generated from progenitor cells located at different positions within the ventral neural tube. V0 and V1 interneurons derive from adjacent progenitor domains that are distinguished by expression of the homeodomain proteins Dbx1 and Dbx2. The spatially restricted expression of Dbx1 has a critical role in establishing the distinction in V0 and V1 neuronal fate. In Dbx1 mutant mice, neural progenitors fail to generate V0 neurons and instead give rise to interneurons that express many characteristics of V1 neurons-their transcription factor profile, neurotransmitter phenotype, migratory pattern, and aspects of their axonal trajectory. Thus, a single progenitor homeodomain transcription factor coordinates many of the differentiated properties of one class of interneurons generated in the ventral spinal cord.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Médula Espinal/metabolismo , Células Madre/metabolismo , Animales , Movimiento Celular , Embrión de Pollo , Ratones , Ratones Mutantes , Fenotipo , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , beta-Galactosidasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
19.
Neuron ; 30(2): 399-410, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11395002

RESUMEN

The patterning of skeletal muscle is thought to depend upon signals provided by motor neurons. We show that AChR gene expression and AChR clusters are concentrated in the central region of embryonic skeletal muscle in the absence of innervation. Neurally derived Agrin is dispensable for this early phase of AChR expression, but MuSK, a receptor tyrosine kinase activated by Agrin, is required to establish this AChR prepattern. The zone of AChR expression in muscle lacking motor axons is wider than normal, indicating that neural signals refine this muscle-autonomous prepattern. Neuronal Neuregulin-1, however, is not involved in this refinement process, nor indeed in synapse-specific AChR gene expression. Our results demonstrate that AChR expression is patterned in the absence of innervation, raising the possibility that similarly prepatterned muscle-derived cues restrict axon growth and initiate synapse formation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Receptores Colinérgicos/genética , Receptores Acoplados a Proteínas G , Agrina/deficiencia , Agrina/genética , Agrina/metabolismo , Animales , Axones/fisiología , Tipificación del Cuerpo/fisiología , Desarrollo Embrionario y Fetal , Ratones , Ratones Noqueados , Desnervación Muscular , Neurregulinas/genética , Neurregulinas/fisiología , Neuronas Aferentes/fisiología , Proteínas Tirosina Quinasas Receptoras/deficiencia , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Receptores Lisofosfolípidos , Recombinación Genética , Sinapsis/fisiología
20.
Curr Opin Genet Dev ; 3(4): 633-40, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8241773

RESUMEN

Vertebrate embryos exhibit a striking midline axis of symmetry that can be recognized in the overall body plan, the framework of skeletal structures and the organization of the nervous system. Cells located at the midline of the embryo during gastrulation have a crucial influence on the establishment of cell identity and pattern within the nervous system. The identification of transcription factors and secreted proteins that are expressed by these midline cell groups has begun to provide a molecular characterization of the organizing centers that establish early neural identity and pattern.


Asunto(s)
Sistema Nervioso/embriología , Vertebrados/embriología , Animales , Desarrollo Embrionario y Fetal , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda