RESUMEN
Cerebral cavernous malformation (CCM) is a vascular anomaly commonly found in children and young adults. Common clinical presentations of pediatric patients with CCMs include headache, focal neurological deficits, and seizures. Approximately 40% of pediatric patients are asymptomatic. Understanding the natural history of CCM is crucial and hemorrhagic rates are higher in patients with an initial hemorrhagic presentation, whereas it is low in asymptomatic patients. There is a phenomenon known as temporal clustering in which a higher frequency of symptomatic hemorrhages occurs within a few years following the initial hemorrhagic event. Surgical resection remains the mainstay of treatment for pediatric CCMs. Excision of a hemosiderin-laden rim is controversial regarding its impact on epilepsy outcomes. Stereotactic radiosurgery is an alternative treatment, especially for deepseated CCMs, but its true efficacy needs to be verified in a clinical trial.
RESUMEN
Choroid plexus hyperplasia (CPH), also known as diffuse villous hyperplasia of choroid plexus, is a rare condition characterized by excessive production of cerebrospinal fluid (CSF), resulting in hydrocephalus. Diagnosing CPH can be challenging due to the absence of clear imaging criteria for choroid plexus hypertrophy and the inability to assess CSF production non-invasively. As a result, many CPH patients are initially treated with a ventriculoperitoneal (VP) shunt, but subsequently require additional surgical intervention due to intractable ascites. In our study, we encountered two CPH patients who presented with significantly enlarged subarachnoid spaces, reduced parenchymal volume, and prominent choroid plexus. Initially, we treated these patients with a VP shunt, but eventually opted for endoscopic choroid plexus cauterization (CPC) to address the intractable ascites. Following the treatment with endoscopic CPC, we observed a gradual reduction in subarachnoid spaces and an increase in parenchymal volume. In cases where bilateral prominent choroid plexus, markedly enlarged subarachnoid spaces, and cortical atrophy are present, CPH should be suspected. In these cases, considering initial treatment with combined endoscopic CPC and shunt may help minimize the need for multiple surgical interventions.
RESUMEN
Purpose@#The present study aimed to evaluate the role of early and delayed surgery in congenital brain tumors and analyze the clinical outcomes of infantile brain tumors. @*Materials and Methods@#We performed a retrospective cohort study on 69 infantile brain tumors at a single institution from January 2008 to June 2023. Outcomes were assessed as early mortality (within 30 days following surgery) to evaluate the risk of early surgery in congenital brain tumors. Outcomes of recurrence and overall survival were analyzed in infantile brain tumors. @*Results@#Surgery-related early mortality appeared to occur in young and low-body-weight patients. Cut-off values of age and body weight were found to be 1.3 months and 5.2 kg to avoid early mortality. Three patients (3/10, 30%) showed early mortality in the early surgery group, and early mortality occurred in one patient (1/14, 7.14%) in the delayed surgery group, whose tumor was excessively enlarged. Younger age at diagnosis (< 3 months of age; hazard ratios [HR], 7.1; 95% confidence intervals [CI], 1.4 to 35.6; p=0.018) and leptomeningeal seeding (LMS; HR, 30.6; 95% CI, 3.7 to 253.1; p=0.002) were significant independent risk factors for high mortality in infantile brain tumors. @*Conclusion@#We suggest delaying surgery until the patient reaches 1.3 months of age and weighs over 5.2 kg with short-term imaging follow-up unless tumors grow rapidly in congenital brain tumors. Younger ages and the presence of LMS are independent risk factors for high mortality in infantile brain tumors.
RESUMEN
The aim of this study is to investigate the genetic profiles and methylation-based classifications of Embryonal tumor with multilayered rosettes (ETMR), with a specific focus on differentiating between C19MC amplified and C19MC-not amplified groups, including cases with DICER1 mutations. To achieve this, next-generation sequencing using a targeted gene panel for brain tumors and methylation class studies using the Epic850K microarray were performed to identify tumor subclasses and their clinicopathological characteristics. The study cohort consisted of four patients, including 3 children (a 4-months/F, a 9-months/M, and a 2 y/F), and one adult (a 30 y/Male). All three tumors in the pediatric patients originated in the posterior fossa and exhibited TTYH1:C19MC fusion and C19MC amplification. The fourth case in the adult patient involved the cerebellopontine angle with biallelic DICER1 mutation. Histopathological examination revealed typical embryonal features characterized by multilayered rosettes and abundant neuropils in all cases, while the DICER1-mutant ETMR also displayed cartilage islands in addition to the classic ETMR pathology. All four tumors showed positive staining for LIN28A. The t-SNE clustering analysis demonstrated that the first three cases clustered with known subtypes of ETMR, specifically C19MC amplified, while the fourth case clustered separately to non-C19MC amplified subclass. During the follow-up period of 6~12 months, leptomeningeal dissemination of the tumor occurred in all patients. Considering the older age of onset in DICER1-mutant ETMR, genetic counseling should be recommended due to the association of DICER1 mutations with germline and second-hit somatic mutations in cancer.
RESUMEN
Objective@#: The goal of this study was to analyze the clinical outcomes of endoscopic third ventriculostomy (ETV) and endoscopic septostomy when shunt malfunction occurs in a patient who has previously undergone placement of a ventriculoperitoneal shunt. @*Methods@#: From 2001 to 2020 at Seoul National University Children's Hospital, patients who underwent ETV or endoscopic septostomy for shunt malfunction were retrospectively analyzed. Initial diagnosis (etiology of hydrocephalus), age at first shunt insertion, age at endoscopic procedure, magnetic resonance or computed tomography image, subsequent shunting data, and follow-up period were included. @*Results@#: Thirty-six patients were included in this retrospective study. Twenty-nine patients, 18 males and 11 females, with shunt malfunction underwent ETV. At the time of shunting, the age ranged from 1 day to 15.4 years (mean, 2.4 years). The mean age at the time of ETV was 13.1 years (range, 0.7 to 29.6 years). Nineteen patients remained shunt revision free. The 5-year shunt revisionfree survival rate was 69% (95% confidence interval [CI], 0.54–0.88). Seven patients, three males and four females, with shunt malfunction underwent endoscopic septostomy. At the time of shunting, the age ranged from 0.2 to 12 years (mean, 3.9 years). The mean age at the time of endoscopic septostomy was 11.9 years (range, 0.5 to 29.5 years). Four patients remained free of shunt revision or addition. The 5-year shunt revision-free survival rate was 57% (95% CI, 0.3–1.0). There were no complications associated with the endoscopic procedures. @*Conclusion@#: The results of our study demonstrate that ETV or endoscopic septostomy can be effective and safe in patients with shunt malfunction.
RESUMEN
Pediatric nondysraphic intramedullary lipoma is very rare, and only limited cases have been reported. In the present case, we present two infant patients with these pathologies who were surgically treated. Previous literature on 20 patients with these diseases who had undergone surgical treatments was analyzed. Surgical treatment should be considered in most symptomatic patients, and laminoplastic laminotomy and internal debulking of the lipoma under intraoperative neurophysiological monitoring are mostly recommended.
RESUMEN
Background@#This study aims to elucidate clinical features, therapeutic strategies, and prognosis of pineal parenchymal tumors (PPT) by analyzing a 30-year dataset of a single institution. @*Methods@#We reviewed data from 43 patients diagnosed with PPT at Seoul National UniversityHospital between 1990 and 2020. We performed survival analyses and assessed prognostic factors. @*Results@#The cohort included 10 patients with pineocytoma (PC), 13 with pineal parenchymaltumor of intermediate differentiation (PPTID), and 20 with pineoblastoma (PB). Most patients presented with hydrocephalus at diagnosis. Most patients underwent an endoscopic third ventriculostomy and biopsy, with some undergoing additional resection after diagnosis confirmation. Radiotherapy was administered with a high prevalence of gamma knife radiosurgery for PC and PPTID, and craniospinal irradiation for PB. Chemotherapy was essential in the treatment of grade 3 PPTID and PB. The 5-year progression-free survival rates for PC, grade 2 PPTID, grade 3 PPTID, and PB were 100%, 83.3%, 0%, and 40%, respectively, and the 5-year overall survival rates were 100%, 100%, 40%, and 55%, respectively. High-grade tumor histology was associated with lower survival rates. Significant prognostic factors varied among tumor types, with World Health Organization (WHO) grade and leptomeningeal seeding (LMS) for PPTID, and the extent of resection and LMS for PB. Three patients experienced malignant transformations. @*Conclusion@#This study underscores the prognostic significance of WHO grades in PPT. It is nec-essary to provide specific treatment according to tumor grade. Grade 3 PPTID showed a poor prognosis. Potential LMS and malignant transformations necessitate aggressive multimodal treatment and close-interval screening.
RESUMEN
Objective@#: Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. @*Methods@#: ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. @*Results@#: The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. @*Conclusion@#: Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.
RESUMEN
Dysembryoplastic neuroepithelial tumor (DNET) is a distinct type of low-grade glioneuronal tumor. Clinically, DNET is highly associated with intractable epilepsy in young children and adolescents. Therefore, the burden of the tumor comprises oncological concerns (recurrence), seizure control, and quality of life. The pathology of DNET is characterized by glioneuronal elements and floating neurons. Grossly, many DNETs harbor separate nodules on the medial side of the mass. Some of the satellite lesions are bone fide tumor nodules that grow during the follow-up. Therefore, removing all satellite lesions may be important to prevent tumor progression. Seizure control is highly dependent on the complete removal of tumors, and the presence of satellite lesions also exerts a negative impact on seizure outcomes.
RESUMEN
Objective@#To develop and evaluate a deep learning-based artificial intelligence (AI) model for detecting skull fractures on plain radiographs in children. @*Materials and Methods@#This retrospective multi-center study consisted of a development dataset acquired from two hospitals (n = 149 and 264) and an external test set (n = 95) from a third hospital. Datasets included children with head trauma who underwent both skull radiography and cranial computed tomography (CT). The development dataset was split into training, tuning, and internal test sets in a ratio of 7:1:2. The reference standard for skull fracture was cranial CT. Two radiology residents, a pediatric radiologist, and two emergency physicians participated in a two-session observer study on an external test set with and without AI assistance. We obtained the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity along with their 95% confidence intervals (CIs). @*Results@#The AI model showed an AUROC of 0.922 (95% CI, 0.842–0.969) in the internal test set and 0.870 (95% CI, 0.785–0.930) in the external test set. The model had a sensitivity of 81.1% (95% CI, 64.8%–92.0%) and specificity of 91.3% (95% CI, 79.2%–97.6%) for the internal test set and 78.9% (95% CI, 54.4%–93.9%) and 88.2% (95% CI, 78.7%– 94.4%), respectively, for the external test set. With the model’s assistance, significant AUROC improvement was observed in radiology residents (pooled results) and emergency physicians (pooled results) with the difference from reading without AI assistance of 0.094 (95% CI, 0.020–0.168; p = 0.012) and 0.069 (95% CI, 0.002–0.136; p = 0.043), respectively, but not in the pediatric radiologist with the difference of 0.008 (95% CI, -0.074–0.090; p = 0.850). @*Conclusion@#A deep learning-based AI model improved the performance of inexperienced radiologists and emergency physicians in diagnosing pediatric skull fractures on plain radiographs.
RESUMEN
Sacrococcygeal teratoma (SCT) is an extragonadal germ cell tumor (GCT) that develops in the fetal and neonatal periods. SCT is a type I GCT in which only teratoma and yolk sac tumors arise from extragonadal sites. SCT is the most common type I GCT and is believed to originate through epigenetic reprogramming of early primordial germ cells migrating from the yolk sac to the gonadal ridges. Fetal SCT diagnosed in utero presents many obstetrical problems. For high-risk fetuses, fetal interventions (devascularization and debulking) are under development. Most patients with SCT are operated on after birth. Complete surgical resection is the key for tumor control, and the anatomical location of the tumor determines the surgical approaches. Incomplete resection and malignant histology are risk factors for recurrence. Approximately 10–15% of patients have a tumor recurrence, which is frequently of malignant histology. Long-term surveillance with monitoring of serum alpha fetoprotein and magnetic resonance imaging is required. Survivors of SCT may suffer anorectal, urological, and sexual sequelae later in their life, and comprehensive evaluation and care are required.
RESUMEN
Sacrococcygeal teratoma (SCT) is an extragonadal germ cell tumor (GCT) that develops in the fetal and neonatal periods. SCT is a type I GCT in which only teratoma and yolk sac tumors arise from extragonadal sites. SCT is the most common type I GCT and is believed to originate through epigenetic reprogramming of early primordial germ cells migrating from the yolk sac to the gonadal ridges. Fetal SCT diagnosed in utero presents many obstetrical problems. For high-risk fetuses, fetal interventions (devascularization and debulking) are under development. Most patients with SCT are operated on after birth. Complete surgical resection is the key for tumor control, and the anatomical location of the tumor determines the surgical approaches. Incomplete resection and malignant histology are risk factors for recurrence. Approximately 10–15% of patients have a tumor recurrence, which is frequently of malignant histology. Long-term surveillance with monitoring of serum alpha fetoprotein and magnetic resonance imaging is required. Survivors of SCT may suffer anorectal, urological, and sexual sequelae later in their life, and comprehensive evaluation and care are required.
RESUMEN
Objective@#: Few studies exist on primary spinal cord tumors (PSCTs) in pediatric patients. The purpose of this study was to perform descriptive analysis and detailed survival analysis for PSCTs. @*Methods@#: Between 1985 and 2017, 126 pediatric patients (male : female, 56 : 70) with PSCTs underwent surgery in a single institution. We retrospectively analyzed data regarding demographics, tumor characteristics, outcomes, and survival statistics. Subgroup analysis was performed for the intramedullary (IM) tumors and extradural (ED) tumors separately. @*Results@#: The mean age of the participants was 6.4±5.04 years, and the mean follow-up time was 69.5±46.30 months. The most common compartment was the ED compartment (n=57, 45.2%), followed by the IM (n=43, 34.1%) and intradural extramedullary (IDEM; n=16, 12.7%) compartments. Approximately half of PSCTs were malignant (n=69, 54.8%). The most common pathologies were schwannomas (n=14) and neuroblastomas (n=14). Twenty-two patients (17.5%) died from the disease, with a mean disease duration of 15.8±15.85 months. Thirty-six patients (28.6%) suffered from progression, with a mean period of 22.6±30.81 months. The 10-year overall survival (OS) rates and progression-free survival (PFS) rates were 81% and 66%, respectively. Regarding IM tumors, the 10-year OS rates and PFS rates were 79% and 57%, respectively. In ED tumors, the 10-year OS rates and PFS rates were 80% and 81%, respectively. Pathology and the extent of resection showed beneficial effects on OS for total PSCTs, IM tumors, and ED tumors. PFS was affected by both the extent of removal and pathology in total PSCTs and ED tumors; however, pathology was a main determinant of PFS rather than the extent of removal in IM tumors. The degree of improvement in the modified McCormick scale showed a trend towards improvement in patients with IM tumors who achieved gross total removal (p=0.447). @*Conclusion@#: Approximately half of PSCTs were malignant, and ED tumors were most common. The most common pathologies were schwannomas and neuroblastomas. Both the pathology and extent of resection had a decisive effect on OS. For IM tumors, pathology was a main determinant of PFS rather than the extent of removal. Radical excision of IM tumors could be a viable option for better survival without an increased risk of worse functional outcomes.
RESUMEN
Objective@#: Few studies exist on primary spinal cord tumors (PSCTs) in pediatric patients. The purpose of this study was to perform descriptive analysis and detailed survival analysis for PSCTs. @*Methods@#: Between 1985 and 2017, 126 pediatric patients (male : female, 56 : 70) with PSCTs underwent surgery in a single institution. We retrospectively analyzed data regarding demographics, tumor characteristics, outcomes, and survival statistics. Subgroup analysis was performed for the intramedullary (IM) tumors and extradural (ED) tumors separately. @*Results@#: The mean age of the participants was 6.4±5.04 years, and the mean follow-up time was 69.5±46.30 months. The most common compartment was the ED compartment (n=57, 45.2%), followed by the IM (n=43, 34.1%) and intradural extramedullary (IDEM; n=16, 12.7%) compartments. Approximately half of PSCTs were malignant (n=69, 54.8%). The most common pathologies were schwannomas (n=14) and neuroblastomas (n=14). Twenty-two patients (17.5%) died from the disease, with a mean disease duration of 15.8±15.85 months. Thirty-six patients (28.6%) suffered from progression, with a mean period of 22.6±30.81 months. The 10-year overall survival (OS) rates and progression-free survival (PFS) rates were 81% and 66%, respectively. Regarding IM tumors, the 10-year OS rates and PFS rates were 79% and 57%, respectively. In ED tumors, the 10-year OS rates and PFS rates were 80% and 81%, respectively. Pathology and the extent of resection showed beneficial effects on OS for total PSCTs, IM tumors, and ED tumors. PFS was affected by both the extent of removal and pathology in total PSCTs and ED tumors; however, pathology was a main determinant of PFS rather than the extent of removal in IM tumors. The degree of improvement in the modified McCormick scale showed a trend towards improvement in patients with IM tumors who achieved gross total removal (p=0.447). @*Conclusion@#: Approximately half of PSCTs were malignant, and ED tumors were most common. The most common pathologies were schwannomas and neuroblastomas. Both the pathology and extent of resection had a decisive effect on OS. For IM tumors, pathology was a main determinant of PFS rather than the extent of removal. Radical excision of IM tumors could be a viable option for better survival without an increased risk of worse functional outcomes.
RESUMEN
Purpose@#We aimed to refine the radiotherapy (RT) volume and dose for intracranial germinoma considering recurrences and long-term toxicities. @*Materials and Methods@#Total 189 patients with intracranial germinoma were treated with RT alone (n=50) and RT with upfront chemotherapy (CRT) (n=139). All cases were confirmed histologically. RT fields comprised the extended-field and involved-field only for primary site. The extended-field, including craniospinal, whole brain (WB), and whole ventricle (WV) for cranial field, is followed by involved-field boost. The median follow-up duration was 115 months. @*Results@#The relapses developed in 13 patients (6.9%). For the extended-field, cranial RT dose down to 18 Gy exhibited no cranial recurrence in 34 patients. In CRT, 74 patients (56.5%) showed complete response to chemotherapy and no involved-field recurrence with low-dose RT of 30 Gy. WV RT with chemotherapy for the basal ganglia or thalamus germinoma showed no recurrence. Secondary malignancy developed in 10 patients (5.3%) with a latency of 20 years (range, 4 to 26 years) and caused mortalities in six. WB or craniospinal field rather than WV or involved-field significantly increased the rate of hormone deficiencies, and secondary malignancy. RT dose for extended-field correlated significantly with the rate of hormone deficiencies, secondary malignancy, and neurocognitive dysfunction. @*Conclusion@#De-intensifying extended-field rather than involved-field or total scheme of RT will be critical to decrease the late toxicities. Upfront chemotherapy could be beneficial for the patients with complete response to minimize the RT dose down to 30 Gy. Prospective trials focused on de-intensification of the extended-field RT are warranted.
RESUMEN
Purpose@#Atypical teratoid/rhabdoid tumor (ATRT) is a highly aggressive malignancy with peak incidence in children aged less than 3 years. Standard treatment for central nervous system ATRT in children under the age of 3 years have not been established yet. The objective of this study was to analyze characteristics and clinical outcomes of ATRT in children aged less than 3 years. @*Materials and Methods@#A search of medical records from seven centers was performed between January 2005 and December 2016. @*Results@#Forty-three patients were enrolled. With a median follow-up of 90 months, 27 patients (64.3%) showed at least one episode of disease progression (PD). The first date of PD was at 160 days after diagnosis. The 1- and 3-year progression-free survivals (PFS) were 51.2% and 28.5%, respectively. The 1- and 3-year overall survivals were 61.9% and 38.1%, respectively. The 3-year PFS was improved from 0% in pre-2011 to 47.4% in post-2011. Excluding one patient who did not receive any further therapy after surgery, 27 patients died due to PD (n=21), treatment-related toxicity (n=5), or unknown cause (n=1). In univariate analysis, factors associated with higher 3-year PFS were no metastases, diagnosis after 2011, early adjuvant radiotherapy, and high-dose chemotherapy (HDCT). In multivariate analysis, the use of HDCT and adjuvant radiotherapy remained significant prognostic factors for PFS (both p < 0.01). @*Conclusion@#Aggressive therapy including early adjuvant radiotherapy and HDCT could be considered to improve outcomes of ATRT in children under the age of 3 years.
RESUMEN
Purpose@#Atypical teratoid/rhabdoid tumor (ATRT) is a highly aggressive malignancy with peak incidence in children aged less than 3 years. Standard treatment for central nervous system ATRT in children under the age of 3 years have not been established yet. The objective of this study was to analyze characteristics and clinical outcomes of ATRT in children aged less than 3 years. @*Materials and Methods@#A search of medical records from seven centers was performed between January 2005 and December 2016. @*Results@#Forty-three patients were enrolled. With a median follow-up of 90 months, 27 patients (64.3%) showed at least one episode of disease progression (PD). The first date of PD was at 160 days after diagnosis. The 1- and 3-year progression-free survivals (PFS) were 51.2% and 28.5%, respectively. The 1- and 3-year overall survivals were 61.9% and 38.1%, respectively. The 3-year PFS was improved from 0% in pre-2011 to 47.4% in post-2011. Excluding one patient who did not receive any further therapy after surgery, 27 patients died due to PD (n=21), treatment-related toxicity (n=5), or unknown cause (n=1). In univariate analysis, factors associated with higher 3-year PFS were no metastases, diagnosis after 2011, early adjuvant radiotherapy, and high-dose chemotherapy (HDCT). In multivariate analysis, the use of HDCT and adjuvant radiotherapy remained significant prognostic factors for PFS (both p < 0.01). @*Conclusion@#Aggressive therapy including early adjuvant radiotherapy and HDCT could be considered to improve outcomes of ATRT in children under the age of 3 years.
RESUMEN
Epilepsy has been known to humankind since antiquity. The surgical treatment of epilepsy began in the early days of neurosurgery and has developed greatly. Many surgical procedures have stood the test of time. However, clinicians treating epilepsy patients are now witnessing a huge tide of change. In 2017, the classification system for seizure and epilepsy types was revised nearly 36 years after the previous scheme was released. The actual difference between these systems may not be large, but there have been many conceptual changes, and clinicians must bid farewell to old terminology. Paradigms in drug discovery are changing, and novel antiseizure drugs have been introduced for clinical use. In particular, drugs that target genetic changes harbor greater therapeutic potential than previous screening-based compounds. The concept of focal epilepsy has been challenged, and now epilepsy is regarded as a network disorder. With this novel concept, stereotactic electroencephalography (SEEG) is becoming increasingly popular for the evaluation of dysfunctioning neuronal networks. Minimally invasive ablative therapies using SEEG electrodes and neuromodulatory therapies such as deep brain stimulation and vagus nerve stimulation are widely applied to remedy dysfunctional epilepsy networks. The use of responsive neurostimulation is currently off-label in children with intractable epilepsy.
Asunto(s)
Niño , Humanos , Clasificación , Estimulación Encefálica Profunda , Descubrimiento de Drogas , Epilepsia Refractaria , Electrodos , Electroencefalografía , Epilepsias Parciales , Epilepsia , Neuronas , Neurocirugia , Convulsiones , Estimulación del Nervio VagoRESUMEN
Epilepsy is one of the major chronic neurological diseases affecting many patients. Resection surgery is the most effective therapy for medically intractable epilepsy, but it is not feasible in all patients. Vagus nerve stimulation (VNS) is an adjunctive neuromodulation therapy that was approved in 1997 for the alleviation of seizures; however, efforts to control epilepsy by stimulating the vagus nerve have been studied for over 100 years. Although its exact mechanism is still under investigation, VNS is thought to affect various brain areas. Hence, VNS has a wide indication for various intractable epileptic syndromes and epilepsy-related comorbidities. Moreover, recent studies have shown anti-inflammatory effects of VNS, and the indication is expanding beyond epilepsy to rheumatoid arthritis, chronic headaches, and depression. VNS yields a more than 50% reduction in seizures in approximately 60% of recipients, with an increase in reduction rates as the follow-up duration increases. The complication rate of VNS is 3–6%, and infection is the most important complication to consider. However, revision surgery was reported to be feasible and safe with appropriate measures. Recently, noninvasive VNS (nVNS) has been introduced, which can be performed transcutaneously without implantation surgery. Although more clinical trials are being conducted, nVNS can reduce the risk of infection and subsequent device failure. In conclusion, VNS has been demonstrated to be beneficial and effective in the treatment of epilepsy and various diseases, and more development is expected in the future.
Asunto(s)
Humanos , Artritis Reumatoide , Encéfalo , Comorbilidad , Depresión , Epilepsia Refractaria , Epilepsia , Falla de Equipo , Estudios de Seguimiento , Trastornos de Cefalalgia , Convulsiones , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Nervio VagoRESUMEN
Brain tumors are the second most common type of structural brain lesion that causes chronic epilepsy. Patients with low-grade brain tumors often experience chronic drug-resistant epilepsy starting in childhood, which led to the concept of long-term epilepsy-associated tumors (LEATs). Dysembryoplastic neuroepithelial tumor and ganglioglioma are representative LEATs and are characterized by young age of onset, frequent temporal lobe location, benign tumor biology, and chronic epilepsy. Although highly relevant in clinical epileptology, the concept of LEATs has been criticized in the neuro-oncology field. Recent genomic and molecular studies have challenged traditional views on LEATs and low-grade gliomas. Molecular studies have revealed that low-grade gliomas can largely be divided into three groups : LEATs, pediatric-type diffuse low-grade glioma (DLGG; astrocytoma and oligodendroglioma), and adult-type DLGG. There is substantial overlap between conventional LEATs and pediatric-type DLGG in regard to clinical features, histology, and molecular characteristics. LEATs and pediatric-type DLGG are characterized by mutations in BRAF, FGFR1, and MYB/MYBL1, which converge on the RAS-RAF-MAPK pathway. Gene (mutation)-centered classification of epilepsy-associated tumors could provide new insight into these heterogeneous and diverse neoplasms and may lead to novel molecular targeted therapies for epilepsy in the near future.