Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 18(9): e2105780, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34918456

RESUMEN

With the development of miniaturization, lightweight and integration of electronic devices, the demand for high-temperature dielectric capacitors is becoming urgent. Nevertheless, the breakdown strength and polarization are deteriorated at high temperatures due to the thermal energy assisting the electron transport and impeding the dipole alignment. Here, a structure of capacitor with double gradients of dielectric constant gradient and strain gradient is designed to achieve high breakdown strength, high working temperature, and high energy storage density simultaneously. It is found that the designed structure of BaHf0.17 Ti0.83 O3 /1mol% SiO2 doped BaZr0.35 Ti0.65 O3 /0.85BaTiO3 -0.15Bi(Mg0.5 Zr0.5 )O3 exhibits excellent energy storage performance. The energy storage density of 127.3 J cm-3 with an energy storage efficiency of 79.6% is realized in the up-sequence multilayer with period N = 2 at room temperature. Moreover, when the working temperature varies from -100 to 200 °C, the energy storage density of the N = 4 capacitor keeps stably at 84.62 J cm-3 with an energy storage efficiency 78.42% at 6.86 MV cm-1 . All these properties promise great potential applications of the designed multilayer capacitors with the double gradients in harsh environments, and the design principle can be applicable to other systems to boost working temperature.

2.
Nano Lett ; 20(2): 1280-1285, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31904971

RESUMEN

Elemental phosphorus nanostructures are notorious for a large number of allotropes, which limits their usefulness as semiconductors. To limit this structural diversity, we synthesize selectively quasi-1D phosphorus nanostructures inside carbon nanotubes (CNTs) that act both as stable templates and nanoreactors. Whereas zigzag phosphorus nanoribbons form preferably in CNTs with an inner diameter exceeding 1.4 nm, a previously unknown square columnar structure of phosphorus is observed to form inside narrower nanotubes. Our findings are supported by electron microscopy and Raman spectroscopy observations as well as ab initio density functional theory calculations. Our computational results suggest that square columnar structures form preferably in CNTs with an inner diameter around 1.0 nm, whereas black phosphorus nanoribbons form preferably inside CNTs with a 4.1 nm inner diameter, with zigzag nanoribbons energetically favored over armchair nanoribbons. Our theoretical predictions agree with the experimental findings.

3.
Faraday Discuss ; 213(0): 245-258, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30371713

RESUMEN

Recently, extended mixed dislocations were observed at a [001]/(100) low-angle tilt grain boundary of a SrTiO3 bicrystal because of a slight twist between the two crystal parts. The b = a[201]/(100) mixed dislocations at the grain boundary dissociate into three dislocations with Burgers vector b of a/2[101], a[100], and a/2[101], respectively. A structure model has been proposed in particular for the dislocation cores of the two partials with b = a/2[101] based on the high-angle annular dark-field (HAADF) images acquired by scanning transmission electron microscopy (STEM). However, the details of the atomic structure and the chemical composition of the dislocation cores remain unexplored, especially for the b = a[100] dislocation that is evidently disassociated into two b = a/2[101] partial dislocations. In this work, we study the further atomic details of the extended mixed dislocations, in particular the local chemistry, in a SrTiO3 bicrystal using STEM, electron energy loss spectroscopy (EELS), and energy dispersive X-ray (EDX) spectroscopy techniques. By these atomic-scale imaging techniques, we reveal a unique feature for the atomic structure of the b = a[201]/(100) extended mixed dislocation, which we named as local crystallographic shear (LCS) structures. In addition, we identify a rock salt FCC-type TiOx (x = 0.66-1.24) phase at the locations of the extended mixed dislocations. In contrast to the insulating TiO2 phases, the TiOx phase is known to exhibit very low electrical resistivity of only several µΩ cm. In this regard, the extended mixed dislocations of SrTiO3 comprising the FCC TiOx phase may function as the conducting filament in resistive switching processes by completion and disruption of the TiOx phase along the dislocation cores through electrically stimulated redox reactions.

4.
Phys Rev Lett ; 120(17): 177601, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29756809

RESUMEN

Distinct and novel features of nanometric electric topological defects, including dipole waves and dipole disclinations, are presently revealed in the PbTiO_{3} layers of PbTiO_{3}/SrTiO_{3} multilayer films by means of quantitative high-resolution scanning transmission electron microscopy. These original dipole configurations are confirmed and explained by atomistic simulations and have the potential to act as functional elements in future electronics.

5.
Angew Chem Int Ed Engl ; 56(7): 1850-1854, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28074606

RESUMEN

A phosphorus allotrope that has not been observed so far, ring-shaped phosphorus consisting of alternate P8 and P2 structural units, has been assembled inside multi-walled carbon nanotube nanoreactors with inner diameters of 5-8 nm by a chemical vapor transport and reaction of red phosphorus at 500 °C. The ring-shaped nanostructures with surrounding graphene walls are stable under ambient conditions. The nanostructures were characterized by high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman scattering, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.

6.
Nat Commun ; 15(1): 6596, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097588

RESUMEN

Dielectric capacitors are highly desired for electronic systems owing to their high-power density and ultrafast charge/discharge capability. However, the current dielectric capacitors suffer severely from the thermal instabilities, with sharp deterioration of energy storage performance at elevated temperatures. Here, guided by phase-field simulations, we conceived and fabricated the self-assembled metadielectric nanostructure with HfO2 as second-phase in BaHf0.17Ti0.83O3 relaxor ferroelectric matrix. The metadielectric structure can not only effectively increase breakdown strength, but also broaden the working temperature to 400 oC due to the enhanced relaxation behavior and substantially reduced conduction loss. The energy storage density of the metadielectric film capacitors can achieve to 85 joules per cubic centimeter with energy efficiency exceeding 81% in the temperature range from 25 °C to 400 °C. This work shows the fabrication of capacitors with potential applications in high-temperature electric power systems and provides a strategy for designing advanced electrostatic capacitors through a metadielectric strategy.

7.
Microsc Microanal ; 19(2): 310-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23452378

RESUMEN

A single layer of LaAlO3 with a nominal thickness of one unit cell, which is sandwiched between a SrTiO3 substrate and a SrTiO3 capping layer, is quantitatively investigated by high-resolution transmission electron microscopy. By the use of an aberration-corrected electron microscope and by employing sophisticated numerical image simulation procedures, significant progress is made in two aspects. First, the structural as well as the chemical features of the interface are determined simultaneously on an atomic scale from the same specimen area. Second, the evaluation of the structural and chemical data is carried out in a fully quantitative way on the basis of the absolute image contrast, which has not been achieved so far in materials science investigations using high-resolution electron microscopy. Considering the strong influence of even subtle structural details on the electronic properties of interfaces in oxide materials, a fully quantitative interface analysis, which makes positional data available with picometer precision together with the related chemical information, can contribute to a better understanding of the functionality of such interfaces.

8.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676449

RESUMEN

The leakage behavior of ferroelectric film has an important effect on energy storage characteristics. Understanding and controlling the leakage mechanism of ferroelectric film at different temperatures can effectively improve its wide-temperature storage performance. Here, the structures of a 1 mol% SiO2-doped BaZr0.35Ti0.65O3 (BZTS) layer sandwiched between two undoped BaZr0.35Ti0.65O3 (BZT35) layers was demonstrated, and the leakage mechanism was analyzed compared with BZT35 and BZTS single-layer film. It was found that interface-limited conduction of Schottky (S) emission and the Fowler-Nordheim (F-N) tunneling existing in BZT35 and BZTS films under high temperature and a high electric field are the main source of the increase of leakage current and the decrease of energy storage efficiency at high temperature. Only an ohmic conductive mechanism exists in the whole temperature range of BZT35/BZTS/BZT35(1:1:1) sandwich structure films, indicating that sandwich multilayer films can effectively simulate the occurrence of interface-limited conductive mechanisms and mention the energy storage characteristics under high temperature.

9.
Nat Commun ; 12(1): 5322, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493734

RESUMEN

Phase transition describes a mutational behavior of matter states at a critical transition temperature or external field. Despite the phase-transition orders are well sorted by classic thermodynamic theory, ambiguous situations interposed between the first- and second-order transitions were exposed one after another. Here, we report discovery of phase-transition frustration near a tricritical composition point in ferroelectric Pb(Zr1-xTix)O3. Our multi-scale transmission electron microscopy characterization reveals a number of geometrically frustrated microstructure features such as self-assembled hierarchical domain structure, degeneracy of mesoscale domain tetragonality and decoupled polarization-strain relationship. Associated with deviation from the classic mean-field theory, dielectric critical exponent anomalies and temperature dependent birefringence data unveil that the frustrated transition order stems from intricate competition of short-range polar orders and their decoupling to long-range lattice deformation. With supports from effective Hamiltonian Monte Carlo simulations, our findings point out a potentially universal mechanism to comprehend the abnormal critical phenomena occurring in phase-transition materials.

10.
ACS Appl Mater Interfaces ; 12(23): 25930-25937, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32412230

RESUMEN

Industry has been seeking a thin-film capacitor that can work at high temperature in a harsh environment, where cooling systems are not desired. Up to now, the working temperature of the thin-film capacitor is still limited up to 200 °C. Herein, we design a multilayer structure with layers of paraferroelectric (Ba0.3Sr0.7TiO3, BST) and relaxor ferroelectric (0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3, BT-BMZ) to realize optimum properties with a flat platform of dielectric constant and high breakdown strength for excellent energy storage performance at high temperature. Through optimizing the multilayer structure, a highly stable relaxor ferroelectric state is obtained for the BST/BT-BMZ multilayer thin-film capacitor with a total thickness of 230 nm, a period number N = 8, and a layer thickness ratio of BST/BT-BMZ = 3/7. The optimized multilayer film shows significantly improved energy storage density (up to 30.64 J/cm3) and energy storage efficiency (over 70.93%) in an ultrawide temperature range from room temperature to 250 °C. Moreover, the multilayer system also exhibits excellent thermal stability in such an ultrawide temperature range with a change of 5.15 and 12.75% for the recoverable energy density and energy storage efficiency, respectively. Our results demonstrate that the designed thin-film capacitor is promising for the application in a harsh environment and open a way to tailor a thin-film capacitor toward higher working temperature with enhanced energy storage performance.

11.
Adv Mater ; 32(9): e1907208, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31975474

RESUMEN

Antiferroelectric-based dielectric capacitors are receiving tremendous attention for their outstanding energy-storage performance and extraordinary flexibility in collecting pulsed powers. Nevertheless, the in situ atomic-scale structural-evolution pathway, inherently coupling to the energy storage process, has not been elucidated for the ultimate mechanistic understanding so far. Here, time- and atomic-resolution structural phase evolution in antiferroelectric PbZrO3 during storage of energy from the electron-beam illumination is reported. By employing state-of-the-art negative-spherical-aberration imaging technique, the quantitative transmission electron microscopy study presented herein clarifies that the hierarchical evolution of polar oxygen octahedra associated with the unit-cell volume change and polarization rotation accounts for the stepwise antiferroelectric-to-ferroelectric phase transition. In particular, an unconventional ferroelectric category-the ferrodistortive phase characteristic of a unique cycloidal polarization order-is established during the dynamic structure investigation. Through clarifying the atomic-scale phase transformation pathway, findings of this work unveil a new territory to explore novel ferrodistortive phases in energy-storage materials with the nonpolar-to-polar phase transitions.

12.
ACS Nano ; 14(4): 4456-4462, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32275386

RESUMEN

Materials with layered crystal structures and high in-plane anisotropy, such as black phosphorus, present unique properties and thus promise for applications in electronic and photonic devices. Recently, the layered structures of GeS2 and GeSe2 were utilized for high-performance polarization-sensitive photodetection in the short wavelength region due to their high in-plane optical anisotropy and wide band gap. The highly complex, low-symmetric (monoclinic) crystal structures are at the origin of the high in-plane optical anisotropy, but the structural nature of the corresponding nanostructures remains to be fully understood. Here, we present an atomic-scale characterization of monoclinic GeS2 nanostructures and quantify the in-plane structural anisotropy at the sub-angstrom level in real space by Cs-corrected scanning transmission electron microscopy. We elucidate the origin of this high in-plane anisotropy in terms of ordered and disordered arrangement of [GeS4] tetrahedra in GeS2 monolayers, through density functional theory (DFT) calculations and orbital-based bonding analyses. We also demonstrate high in-plane mechanical, electronic, and optical anisotropies in monolayer GeS2 and envision phase transitions under uniaxial strain that could potentially be exploited for nonvolatile memory applications.

13.
ACS Appl Mater Interfaces ; 11(5): 5247-5255, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30640435

RESUMEN

As passive components in flexible electronics, the dielectric capacitors for energy storage are facing the challenges of flexibility and capability for integration and miniaturization. In this work, the all-inorganic flexible dielectric film capacitors have been obtained. The flexible capacitors show a desirable recoverable energy density ( Wrec) of 40.6 J/cm3 and a good energy efficiency (η) of 68.9%. Moreover, they have no obvious deterioration on both the Wrec and η after 104 times of mechanical bending cycles or under the bending state with a curvature radius of 4 mm. Besides, the outstanding stability of the capacitors against cycle fatigue over fast 106 charge-discharge cycles is demonstrated. Most importantly, they work properly at a wide temperature range from -120 to 150 °C with Wrec > 15 J/cm3 and η > 70%. These fascinating performances endow the flexible capacitors with huge potential application in the future "microenergy storage" system in flexible electronics.

14.
Ultramicroscopy ; 192: 57-68, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890501

RESUMEN

Pyrochlores characterized by the chemical formula A2B2O7 form an extended class of materials with interesting physical and chemical properties. The compound Bi1.5ZnNb1.5O7 is prototypical. Its excellent dielectric properties make it attractive, e.g. for capacitors, tunable microwave devices and electric-energy storage equipment. Bi1.5ZnNb1.5O7 shows an intriguing frequency-dispersive dielectric relaxation at 50 K ≤ T ≤ 250 K, which has been studied intensively but is still not fully understood. In this first study on a pyrochlore by atomic-resolution transmission electron microscopy we observe the Bi atoms on A sites since, due to their low nuclear charge, the contribution of Zn atoms to the contrast of these sites is negligible. We find in our [1¯00]and [112] oriented images that the position of the atomic intensity maxima do not coincide with the projected Wyckoff positions of the basic pyrochlore lattice. This supplies atomic-scale evidence for displacive disorder on split A-type sites. The Bi atoms are sessile, only occasionally we observe in time sequences of images jumps between individual split-site positions. The apertaining jump rate of the order of 0.1-1 Hz is by ten orders of magnitude lower than the values derived in the literature from Arrhenius plots of the low-temperature dielectric relaxation data. It is argued that these jumps are radiation induced. Therefore our observations are ruling out a contribution of Bi-atom jumps to low-temperature dielectric A sites-related relaxation. It is suggested that this relaxation is mediated by jumps of Zn atoms.

15.
ACS Appl Mater Interfaces ; 10(1): 1428-1433, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29250959

RESUMEN

Epitaxial Pr0.5Sr0.5CoO3 thin films have been grown on single-crystalline (La0.289Sr0.712)(Al0.633Ta0.356)O3(001) substrates by the pulsed laser deposition technique. The magnetic properties and microstructure of these films are investigated. It is found that Ruddlesden-Popper faults (RP faults) can be introduced in the films by changing the laser repetition rate. The segregation of Pr at the RP faults is characterized by atomic-resolution chemical mapping. The formation of the RP faults not only contributes to the epitaxial strain relaxation but also significantly decreases the ferromagnetic long-range order of the films, resulting in lower magnetizations than those of the fault-free films. Our results provide a strategy for tuning the magnetic properties of cobalt-based perovskite films by modifying the microstructure through the film growth process.

16.
ACS Appl Mater Interfaces ; 10(46): 39422-39427, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30394081

RESUMEN

Recent development in magnetic nanostructures has promoted flexible electronics into the application of integrated devices. However, the magnetic properties of flexible devices strongly depend on the bending states. In order to realize the design of new flexible devices driven by an external field, the first step is to make the magnetic properties insensitive to the bending. Herein, a series of LiFe5O8 nanopillar arrays were fabricated, whose microwave magnetic properties can be modulated by tuning the nanostructure. This work demonstrates that nanostructure engineering is useful to control the bending sensitivity of microwave magnetism and further design stable flexible devices.

17.
Adv Sci (Weinh) ; 5(12): 1800855, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30581700

RESUMEN

With the development of flexible electronics, the mechanical flexibility of functional materials is becoming one of the most important factors that needs to be considered in materials selection. Recently, flexible epitaxial nanoscale magnetic materials have attracted increasing attention for flexible spintronics. However, the knowledge of the bending coupled dynamic magnetic properties is poor when integrating the materials in flexible devices, which calls for further quantitative analysis. Herein, a series of epitaxial LiFe5O8 (LFO) nanostructures are produced as research models, whose dynamic magnetic properties are characterized by ferromagnetic resonance (FMR) measurements. LFO films with different crystalline orientations are discussed to determine the influence from magnetocrystalline anisotropy. Moreover, LFO nanopillar arrays are grown on flexible substrates to reveal the contribution from the nanoscale morphology. It reveals that the bending tunability of the FMR spectra highly depends on the demagnetization field energy of the sample, which is decided by the magnetism and the shape factor in the nanostructure. Following this result, LFO film with high bending tunability of microwave magnetic properties, and LFO nanopillar arrays with stable properties under bending are obtained. This work shows guiding significances for the design of future flexible tunable/stable microwave magnetic devices.

18.
Adv Mater ; : e1800957, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29882270

RESUMEN

Resistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric-field-driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2 /H218 O tracer gas atmosphere combined with time-of-flight secondary-ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3 -based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation.

19.
Ultramicroscopy ; 176: 99-104, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28187962

RESUMEN

The application of combined chromatic and spherical aberration correction in high-resolution transmission electron microscopy enables a significant improvement of the spatial resolution down to 50 pm. We demonstrate that such a resolution can be achieved in practice at 200kV. Diffractograms of images of gold nanoparticles on amorphous carbon demonstrate corresponding information transfer. The Y atom pairs in [010] oriented yttrium orthoaluminate are successfully imaged together with the Al and the O atoms. Although the 57 pm pair separation is well demonstrated separations between 55 pm and 80 pm are measured. This observation is tentatively attributed to structural relaxations and surface reconstruction in the very thin samples used. Quantification of the resolution limiting effective image spread is achieved based on an absolute match between experimental and simulated image intensity distributions.

20.
ACS Appl Mater Interfaces ; 9(7): 6539-6546, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28141926

RESUMEN

Conductive domain walls (DWs) in ferroic oxides as device elements are a highly attractive research topic because of their robust and agile response to electric field. Charged DWs possessing metallic-type conductivity hold the highest promises in this aspect. However, their intricate creation, low stability, and interference with nonconductive DWs hinder their investigation and the progress toward future applications. Here, we find that conversion of the nominally neutral ferroelastic 90° DWs into partially charged DWs in Pb(Zr0.1Ti0.9)O3 thin films enables easy and robust control over the DW conductivity. By employing transmission electron microscopy, conductive atomic force microscopy and phase-field simulation, our study reveals that charging of the ferroelastic DWs is controlled by mutually coupled DW bending, type of doping, polarization orientation and work-function of the adjacent electrodes. Particularly, the doping outweighs other parameters in controlling the DW conductivity. Understanding the interplay of these key parameters not only allows us to control and optimize conductivity of such ferroelastic DWs in the oxide ferroelectrics but also paves the way for utilization of DW-based nanoelectronic devices in the future.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda