Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neuropsychopharmacology ; 48(2): 391-401, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229597

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease and has an insidious onset. Exploring the characteristics and mechanism of the early symptoms of AD plays a critical role in the early diagnosis and intervention of AD. Here we found that depressive-like behavior and short-term spatial memory dysfunction appeared in APPswe/PS1dE9 mice (AD mice) as early as 9-11 weeks of age. Electrophysiological analysis revealed excitatory/inhibitory (E/I) imbalance in the prefrontal cortex (PFC). This E/I imbalance was induced by significant reduction in the number and activity of parvalbumin interneurons (PV+ INs) in this region. Furthermore, optogenetic and chemogenetic activation of residual PV+ INs effectively ameliorated depressive-like behavior and rescued short-term spatial memory in AD mice. These results suggest the PFC is selectively vulnerable in the early stage of AD and prefrontal PV+ INs deficits play a key role in the occurrence and development of early symptoms of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Parvalbúminas/metabolismo , Enfermedad de Alzheimer/complicaciones , Interneuronas/fisiología , Corteza Prefrontal/metabolismo , Ratones Transgénicos
2.
iScience ; 26(7): 107268, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37496671

RESUMEN

Ischemic stroke is the second leading cause of death worldwide, and there are limited effective treatment strategies. QHRD106, a polyethyleneglycol (PEG)-modified long-acting tissue kallikrein preparation, has not been reported previously. In this study, we aimed to investigate the therapeutic effect of QHRD106 in ischemic stroke and its possible mechanism. We found that QHRD106 treatment alleviated brain injury after stroke via bradykinin (BK) receptor B2 (B2R) instead of BK receptor B1 (B1R). Mechanistically, QHRD106 reduced high-mobility group box 1 (HMGB1)-induced apoptosis and inflammation after ischemic stroke in vivo and in vitro. Moreover, we confirmed that QHRD106 reduced the level of acetylated HMGB1 and reduced the binding between heat shock protein 90 alpha family class A member 1 (HSP90AA1) and HMGB1, thus inhibiting the translocation and release of HMGB1. In summary, these findings indicate that QHRD106 treatment has therapeutic potential for cerebral ischemic stroke.

3.
Int Immunopharmacol ; 101(Pt A): 108325, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34740080

RESUMEN

Ischemic stroke is a devastating disease with high morbidity and mortality rates, and the proinflammatory microglia-mediated inflammatory response directly affects stroke outcome. Previous studies have reported that JLX001, a novel compound with a structure similar to that of cyclovirobuxine D (CVB-D), exerts antiapoptotic, anti-inflammatory and antioxidative effects on ischemia-induced brain injury. However, the role of JLX001 in microglial polarization and nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome regulation after ischemic stroke has not been fully investigated. In this study, we used the middle cerebral artery occlusion (MCAO) method to establish a focal cerebral ischemia model and found that JLX001 attenuated the brain infarct size and improved cerebral damage. Moreover, the expression levels of proinflammatory cytokines (interleukin [IL]-1ß and tumor necrosis factor [TNF]-α) were significantly reduced while those of the anti-inflammatory cytokine IL-10 were increased in the JLX001-treated group. Immunofluorescence staining and flow cytometry revealed an increased number of anti-inflammatory phenotypic microglia and a reduced number of proinflammatory phenotypic microglia in JLX001-treated MCAO mice. Western blotting analysis showed that JLX001 inhibited the expression of NLRP3 and proteins related to the NLRP3 inflammasome axis in vivo. Furthermore, JLX001 reduced the number of NLRP3/Iba1 cells in ischemic penumbra tissues. Finally, mechanistic analysis revealed that JLX001 significantly inhibited the expression of proteins related to the NF-κB signaling pathway. Additionally, pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, ameliorated cerebral ischemia-reperfusion injury by suppressing microglial polarization towards the proinflammatory phenotype and NLRP3 activation in vivo, further suggesting that these protective effects of JLX001 were mediated by inhibition of the NF-κB signaling pathway. These results suggest that JLX001 is a promising therapeutic approach for ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Inflamasomas/efectos de los fármacos , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos , Triterpenos/uso terapéutico , Animales , Western Blotting , Isquemia Encefálica/inmunología , Isquemia Encefálica/metabolismo , Polaridad Celular/efectos de los fármacos , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Inflamasomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda