Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biotechnol Lett ; 37(4): 863-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25479703

RESUMEN

A trypsin inhibitor gene (CoTI1) from Cassia obtusifolia was isolated and the deduced amino acid sequence was attributed to the Kunitz-type trypsin inhibitor. The recombined CoTI1, expressed in E. coli, exhibited strong inhibitory effect on bovine trypsin and trypsin-like proteases from Helicoverpa armigera, Spodoptera exigua, and Spodoptera litura. CoTI1 thus presents insecticidal properties that may be useful for the genetic engineering of plants. Leu84, Arg86 and Thr88 were predicted as three key residues by molecular modeling in which Arg86, inserted into the substrate pocket of trypsin, interacted directly with residue Asp189 of trypsin causing the specific inhibition against trypsin. The predicted results were confirmed by site-directed mutagenesis with L84A, R86A and T88A, respectively. The substantial changing expression level of CoTI1 under salt, drought and abscisic acid treatment suggested that CoTI1 might play important role in the resistance against abiotic stress.


Asunto(s)
Cassia/química , Conformación Proteica , Inhibidores de Tripsina/química , Inhibidores de Tripsina/metabolismo , Cassia/genética , Clonación Molecular , Análisis Mutacional de ADN , ADN de Plantas/química , ADN de Plantas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Inhibidores de Tripsina/aislamiento & purificación
2.
Pathogens ; 13(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057752

RESUMEN

Verticillium wilt, caused by the pathogenic fungus Verticillium dahliae, has emerged as a severe threat to cotton globally. However, little is known about the genetic diversity of this pathogen in an infected single cotton plant. In this study, we isolated three new V. dahliae strains from the disease stems of Gossypium hirsutum from the cotton field in Western China and assessed their pathogenicity to the cotton cultivar Xinnongmian-1 and its two transgenic lines, as well as two laboratory strains, VD592 and VD991. These three new V. dahliae strains were identified using DNA barcodes of tryptophan synthase (TS), actin (ACT), elongation factor 1-α (EF), and glyceraldehyde-3-phosphate dehydrogenase (GPD). Moreover, the haplotype analysis revealed that the three new races had distinct haplotypes at the TS locus. Furthermore, the results of culture features and genetic diversity of ISSR (inter-simple sequence repeat) revealed that there were separate V. dahliae strains, which were strong defoliating pathotypes belonging to race 2 type, as determined by particular DNA marker recognition. The identified strains demonstrated varied levels of pathogenicity by leaf disc and entire plant inoculation methods. Conservatively, these strains showed some pathogenicity on cotton lines, but were less pathogenic than the reference strains. The findings revealed that several strong defoliating V. dahliae pathotypes coexist on the same cotton plant. It indicats the importance of regular monitoring as an early warning system, as well as the detection and reporting of virulent pathogen strains and their effects on crop response.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda