Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Acta Pharmacol Sin ; 44(2): 465-474, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35953645

RESUMEN

Survival is one of the most important endpoints in cancer therapy, and parametric survival analysis could comprehensively reveal the overall result of disease progression, drug efficacy, toxicity as well as their interactions. In this study we investigated the efficacy and toxicity of dexamethasone (DEX) combined with gemcitabine (GEM) in pancreatic cancer xenograft. Nude mice bearing SW1990 pancreatic cancer cells derived tumor were treated with DEX (4 mg/kg, i.g.) and GEM (15 mg/kg, i.v.) alone or in combination repeatedly (QD, Q3D, Q7D) until the death of animal or the end of study. Tumor volumes and net body weight (NBW) were assessed every other day. Taking NBW as a systemic safety indicator, an integrated pharmacokinetic/pharmacodynamic (PK/PD) model was developed to quantitatively describe the impact of tumor size and systemic safety on animal survival. The PK/PD models with time course data for tumor size and NBW were established, respectively, in a sequential manner; a parametric time-to-event (TTE) model was also developed based on the longitudinal PK/PD models to describe the survival results of the SW1990 tumor-bearing mice. These models were evaluated and externally validated. Only the mice with good tumor growth inhibition and relatively stable NBW had an improved survival result after DEX and GEM combination therapy, and the simulations based on the parametric TTE model showed that NBW played more important role in animals' survival compared with tumor size. The established model in this study demonstrates that tumor size was not always the most important reason for cancer-related death, and parametric survival analysis together with safety issues was also important in the evaluation of oncology therapies in preclinical studies.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Línea Celular Tumoral , Xenoinjertos , Ratones Desnudos , Neoplasias Pancreáticas/tratamiento farmacológico
2.
Acta Pharmacol Sin ; 43(4): 1001-1012, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34183757

RESUMEN

Breast cancer is the second leading cause of cancer-related mortality in women, mainly due to metastasis, which is strongly associated with cancer stemness. Our previous studies showed that the eradication of cancer stem-like cells (CSCs) may be related to the activation of dopamine D1 receptor (D1DR). This study aimed to explicitly demonstrate the target-role of D1DR activation in antimetastatic therapy and to investigate the potential efficacy and the underlying D1DR-related mechanisms of QAP14, a new oral compound. 4T1, MDA-MB-231, and D1DR-knockout 4T1 (4T1-D1DR) cells were selected for in vitro study, while 4T1 and 4T1-D1DR cells were further used to establish a mouse allograft model for in vivo study. Our results showed that D1DR is abundantly expressed in both 4T1 and MDA-MB-231 cells and that knocking out D1DR in 4T1 cells accelerated migration and invasion in vitro as well as lung metastasis in vivo. QAP14 inhibited colony formation, cell motility, mammosphere formation and CSC frequency, induced CSC apoptosis and D1DR expression, and increased cAMP/cGMP levels. Additionally, QAP14 showed inhibitory effects on tumor growth and lung metastasis with acceptable safety in vivo. Knocking out D1DR almost completely abolished the efficacy, confirming that QAP14 exhibits its anti-CSC and antimetastatic effects through D1DR activation. The underlying mechanisms involved suppression of the nuclear factor κB (NF-κB)/protein kinase B (Akt) pathway and consequent downregulation of both epithelial-to-mesenchymal transition (EMT) process and cancer stemness. In summary, our findings suggest a potential candidate compound, QAP14, as well as a potential target, D1DR, for metastatic breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Células Madre Neoplásicas , Receptores de Dopamina D1/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda