Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Genet ; 58(9): 587-591, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817299

RESUMEN

BACKGROUND: Pathogenic mutation in BRCA genes causes high cancer risk. Identifying the mutation carriers plays key roles in preventing BRCA mutation-related cancer. Population screening has demonstrated its power for comprehensive identification of the mutation carriers. However, it is only recommended for the Ashkenazi Jewish population with high prevalence of three founder mutations, but not for non-Ashkenazi Jewish populations as the cost-effectiveness could be too low due to their lower mutation prevalence and lack of founder mutation. Population screening would not benefit the majority of the human population for BRCA mutation-related cancer prevention. METHODS: We used population BRCA screening in 6000 residents, 1% of the Macau population, an ethnic Chinese population with unique genetic, linguistic and cultural features, and its BRCA mutation has not been analysed before. RESULTS: We called BRCA variants, identified 18 carriers with 14 pathogenic mutations and determined the prevalence of 0.29% in the population (95% CI 0.15% to 0.42%). We compared the testing cost between the Ashkenazi Jewish population, the Sephardi Jewish population and the Macau population, and observed only a few fold differences. CONCLUSION: Our study shows that testing cost is not the most important factor in considering population BRCA screening, at least for the populations in the developed countries/regions, regardless of the status of mutation prevalence and founder mutation.


Asunto(s)
Genes BRCA1 , Genes BRCA2 , Predisposición Genética a la Enfermedad , Mutación , Neoplasias/epidemiología , Neoplasias/genética , Adulto , Alelos , Análisis Costo-Beneficio , Femenino , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Humanos , Judíos/genética , Macao/epidemiología , Macao/etnología , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Neoplasias/diagnóstico , Vigilancia de la Población , Prevalencia , Análisis de Secuencia de ADN , Adulto Joven
2.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613656

RESUMEN

The decidualization of endometrial stromal cells (ESCs) is an essential process facilitating embryo implantation. However, the roles of non-decidualized and decidualized ESCs in regulating the microenvironment of a receptive endometrium remain unclear. We investigated single-cell transcriptomic changes in the uterus of a CD-1 mouse model at the post-implantation stage. The implantation and inter-implantation sites of the uteruses of pregnant mice at 4.5 and 5.5 days post-coitum were dissected for single-cell RNA sequencing. We identified eight cell types: epithelial cells, stromal cells, endothelial cells, mesothelial cells, lymphocytes, myocytes, myeloids, and pericytes. The ESC transcriptome suggests that the four ESC subtypes are involved in the extracellular remodeling during implantation. The trajectory plot of ESC subtypes indicates embryo implantation that involves a differentiation pathway from undifferentiated ESCs (ESC 1) to decidualized ESCs (DEC ESCs), with distinct signaling pathways between the ESC subtypes. Furthermore, the ligand-receptor analysis suggests that ESCs communicate with epithelial cells and immune cells through nectin and ICAM signaling. Collectively, both decidualized and non-decidualized ESCs may regulate the endometrial microenvironment for optimal endometrial receptivity and immune tolerance. This study provides insights on the molecular and cellular characteristics of mouse ESCs in modulating the epithelial and lymphocyte functions during early embryo implantation.


Asunto(s)
Implantación del Embrión , Células Endoteliales , Embarazo , Femenino , Animales , Ratones , Implantación del Embrión/genética , Endometrio/metabolismo , Linfocitos , Células del Estroma/metabolismo , ARN/metabolismo , Células Epiteliales
3.
Biol Reprod ; 102(3): 693-704, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31742322

RESUMEN

Bisphenol A (BPA) is commonly found in epoxy resins used in the manufacture of plastic coatings in food packaging and beverage cans. There is a growing concern about BPA as a weak estrogenic compound that can affect human endocrine function. Chemicals structurally similar to BPA, such as bisphenol F (BPF) and bisphenol S (BPS), have been developed as substitutes in the manufacturing industry. Whether these bisphenol substitutes have adverse effects on human endocrine and reproductive systems remains largely unknown. This study investigated the effects of BPA, BPF, and BPS on regulating the function of decidualized human primary endometrial stromal cells on trophoblast outgrowth and invasion by indirect and direct co-culture models. All three bisphenols did not affect the stromal cell decidualization process. However, BPA- and BPF-treated decidualized stromal cells stimulated trophoblastic spheroid invasion in the indirect coculture model. The BPA-treated decidualized stromal cells had upregulated expressions of several invasion-related molecules including leukemia inhibitory factor (LIF), whereas both BPA- and BPF-treated decidualized stromal cells had downregulated expressions of anti-invasion molecules including plasminogen activator inhibitor type 1 (PAI-1) and tumor necrosis factor (TNFα) . Taken together, BPA and BPF altered the expression of invasive and anti-invasive molecules in decidualized stromal cells modulating its function on trophoblast outgrowth and invasion, which could affect the implantation process and subsequent pregnancy outcome.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Disruptores Endocrinos/farmacología , Endometrio/efectos de los fármacos , Estrógenos no Esteroides/farmacología , Fenoles/farmacología , Células del Estroma/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Línea Celular Tumoral , Endometrio/metabolismo , Femenino , Humanos , Factor Inhibidor de Leucemia/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Células del Estroma/metabolismo , Trofoblastos/metabolismo
4.
Int J Cancer ; 145(4): 962-973, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30702160

RESUMEN

BRCA1 and BRCA2 play essential roles in maintaining the genome stability. Pathogenic germline mutations in these two genes disrupt their function, lead to genome instability and increase the risk of developing breast and ovarian cancers. BRCA mutations have been extensively screened in Caucasian populations, and the resulting information are used globally as the standard reference in clinical diagnosis, treatment and prevention of BRCA-related cancers. Recent studies suggest that BRCA mutations can be ethnic-specific, raising the question whether a Caucasian-based BRCA mutation information can be used as a universal standard worldwide, or whether an ethnicity-based BRCA mutation information system need to be developed for the corresponding ethnic populations. In this study, we used Chinese population as a model to test ethnicity-specific BRCA mutations considering that China has one of the latest numbers of breast cancer patients therefore BRCA mutation carriers. Through comprehensive data mining, standardization and annotation, we collected 1,088 distinct BRCA variants derived from over 30,000 Chinese individuals, one of the largest BRCA data set from a non-Caucasian population covering nearly all known BRCA variants in the Chinese population (https://dbBRCA-Chinese.fhs.umac.mo). Using this data, we performed multi-layered analyses to determine the similarities and differences of BRCA variation between Chinese and non-Chinese ethnic populations. The results show the substantial differences of BRCA data between Chinese and non-Chinese ethnicities. Our study indicates that the current Caucasian population-based BRCA data is not adequate to represent the BRCA status in non-Caucasian populations. Therefore, ethnic-based BRCA standards need to be established to serve for the non-Caucasian populations.


Asunto(s)
Pueblo Asiatico/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal/genética , Neoplasias Ováricas/genética , Femenino , Humanos , Persona de Mediana Edad
5.
Reprod Biol ; 22(3): 100666, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35688117

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells via receptor angiotensin-converting enzyme 2 (ACE2) and co-receptor transmembrane serine protease 2 (TMPRSS2). However, patients with SARS-CoV-2 infection receiving ACE1 inhibitors had higher ACE2 expression and were prone to poorer prognostic outcomes. Until now, information on the expression of ACE1, ACE2, and TMPRSS2 in human endometrial tissues, and the effects of ACE inhibitors on embryo implantation are limited. We found human endometria expressed ACE1, ACE2, and TMPRSS2 transcripts and proteins. Lower ACE1, but higher ACE2 transcripts were found at the secretory than in the proliferative endometria. ACE1 proteins were weakly expressed in endometrial epithelial and stromal cells, whereas ACE2 and TMPRSS2 proteins were highly expressed in luminal and glandular epithelial cells. However, ACE1 and TMPRSS4 were highly expressed in receptive human endometrial epithelial (Ishikawa and RL95-2) cells, but not in non-receptive AN3CA and HEC1-B cells. Treatment of human endometrial epithelial cells with ACE1 (Captopril, Enalaprilat, and Zofenopril) or ACE2 (DX600) inhibitors did not significantly alter the expression of ACE1, ACE2 and TMPRSS2 transcripts and spheroid (blastocyst surrogate) attachment onto Ishikawa cells in vitro. Taken together, our data suggest that higher ACE2 expression was found in mid-secretory endometrium and the use of ACE inhibitors did not alter endometrial receptivity for embryo implantation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina , Endometrio , Femenino , Humanos , SARS-CoV-2 , Serina Endopeptidasas
6.
Cells ; 10(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34831106

RESUMEN

Bisphenol A (BPA) is a well-known endocrine disruptor, widely used in various consumer products and ubiquitously found in air, water, food, dust, and sewage leachates. Recently, several countries have restricted the use of BPA and replaced them with bisphenol S (BPS) and bisphenol F (BPF), which have a similar chemical structure to BPA. Compared to BPA, both BPS and BPF have weaker estrogenic effects, but their effects on human reproductive function including endometrial receptivity and embryo implantation still remain largely unknown. We used an in vitro spheroid (blastocyst surrogate) co-culture assay to investigate the effects of BPA, BPS, and BPF on spheroid attachment on human endometrial epithelial cells, and further delineated their role on steroid hormone receptor expression. We also used transcriptomics to investigate the effects of BPA, BPS, and BPF on the transcriptome of human endometrial cells. We found that bisphenol treatment in human endometrial Ishikawa cells altered estrogen receptor alpha (ERα) signaling and upregulated progesterone receptors (PR). Bisphenols suppressed spheroid attachment onto Ishikawa cells, which was reversed by the downregulation of PR through PR siRNA. Overall, we found that bisphenol compounds can affect human endometrial epithelial cell receptivity through the modulation of steroid hormone receptor function leading to impaired embryo implantation.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Endometrio/citología , Células Epiteliales/citología , Fenoles/farmacología , Receptores de Superficie Celular/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Genes Reporteros , Humanos , Elementos de Respuesta/genética , Esferoides Celulares/efectos de los fármacos , Sulfonas/farmacología , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Reprod Biol ; 21(2): 100498, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33677360

RESUMEN

Estrogen and progesterone regulate the expression of endometrial proteins that determine endometrial receptivity for embryo implantation. The protein disulfide isomerase (PDI) family of proteins play a diverse role in regulating protein modification and redox function. Although the role of PDIs in cancer progression has been widely studied, their role in endometrial receptivity is largely unknown. We have focused on the expressions of PDIA1, PDIA2, PDIA3, PDIA4, PDIA5, and PDIA6 isoforms in endometrial epithelium under the influence of estrogen and progesterone and investigated their functional role in regulating endometrial receptivity. We found PDIA1-6 transcripts were expressed in endometrial epithelial Ishikawa, RL95-2, AN3CA, and HEC1-B cell lines. The expression of PDIA1 was low and PDIA5 was high in HEC1-B cells, whereas PDIA2 was high in both AN3CA and HEC1-B cells. In Ishikawa cells, estrogen (10 and 100 nM) upregulated PDIA1 and PDIA6, whereas estrogen (100 nM) downregulated PDIA4 and PDIA5; and progesterone (0.1 and 1 µM) downregulated transcript expressions of PDIA1-6. In human endometrial samples, significantly lowered transcript expressions of PDIA2 and PDIA5 were observed in the secretory phase compared with the proliferative phase, whereas no change was observed in the other studied transcripts throughout the cycle. Inhibition of PDI by PDI antibody (5 and 10 µg/mL) and PDI inhibitor bacitracin (1 and 5 mM) significantly increased the attachment of Jeg-3 spheroids onto AN3CA cells. Taken together, our study suggests a role of PDI in regulating endometrial receptivity and the possibility of using PDI inhibitors to enhance endometrial receptivity.


Asunto(s)
Endometrio/fisiología , Estrógenos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Progesterona/farmacología , Proteína Disulfuro Isomerasas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Cultura , Células Epiteliales/fisiología , Femenino , Humanos , Isoenzimas , Proteína Disulfuro Isomerasas/genética , Esferoides Celulares/fisiología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda