Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Phys Chem Chem Phys ; 26(3): 2058-2065, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126702

RESUMEN

We investigated the linear and nonlinear response of the localized surface plasmons (LSPs) and surface plasmon polaritons (SPPs) in metal and MoS2 nanostructures. The results show that the response of LSPs and SPPs has an important influence on the energy exchange. SPPs with unique non-radiative characteristics can be used as energy recovery tanks to reuse the radiated energy of LSPs and promote the production of hot carriers. The energy exchange through plasmon modes can promote the transfer of hot electrons in the Au grating, the MoS2 layer, and the metal film. The fundamental field induces the increase of the second harmonic wave by introducing the second-order nonlinear source. In addition, the evolution of the lifetime of linear and nonlinear plasmonic modes is also investigated to study the underlying mechanism of the micro process in the plasmonic-photonic interaction. The plasmonic energy exchanging configuration overcomes the challenge by utilizing hot carriers. It is instructive in terms of improving the linear and nonlinear performance of plasmonic opto-electronic devices.

2.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955612

RESUMEN

Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Ácidos Indolacéticos/metabolismo , Estrés Salino , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda