RESUMEN
Nowadays, there has been a rapid expansion of tea plantations in the mountainous areas of southwest China. However, little research has focused on the pollution problems caused by the losses of nitrogen and phosphorus from tea plantations in this area. Therefore, a field experiment was conducted using the runoff plots in situ monitoring method following farmers' conventional management from 2018 to 2020 in Guizhou Province, southwest China. The characteristics of nitrogen and phosphorus losses from tea plantation in the mountainous area were clarified, and the effect of rainfall intensity on the nitrogen and phosphorus losses were explored. 298 natural rainfall events with a total rainfall of 2258 mm were observed during the 2-year observation period, and erosive rainfall accounted for 78.1% of the total rainfall. The total surface runoff amount was 72 mm, and the surface runoff coefficient was 3.19%. The total nitrogen (TN) and total phosphorus (TP) concentrations in the surface runoff ranged from 0.68 to 14.86 mg·L-1 and 0.18 to 2.34 mg·L-1, respectively. The TN and TP losses from tea plantations were 1.47 kg N ha-1 yr-1 and 0.210 kg P ha-1 yr-1. Rainfall intensity directly and significantly affected the surface runoff and nitrogen and phosphorus loss. Where 72.6% of the cumulative rainfall, 92.5% of the total surface runoff amounts, 87.4% of total nitrogen loss, and 90.5% of total phosphorus loss were observed in rainfall events above 10 mm. Taken together, the results provide scientific guidance for quantifying the characteristics of nutrient loss in subtropical mountain tea plantations.
Asunto(s)
Monitoreo del Ambiente , Fósforo , Fósforo/análisis , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , China , Té , Movimientos del Agua , LluviaRESUMEN
Understanding the responses of soil bacterial community to long-term fertilization in dryland of yellow soil could provide theoretical basis for establishing scientific fertilization system and cultivating healthy soil. Based on a 25-year long-term fertilization experiment on yellow soil, we collected soil samples from 0-20 cm layer under different fertilization treatments: no fertilization (CK), balanced application of N, P and K fertilizers (NPK), single application of organic fertilizer (M), combined application of constant organic and inorganic fertilizer (MNPK), and 1/2 organic fertilizer instead of 1/2 chemical fertilizer (MNP). Illumina MiSeq high-throughput sequencing technology was used to examine the effects of different fertilization patterns on soil bacterial community structure and soil nutrient content. The main driving factors of soil bacterial community were explored. The results showed that soil pH and organic matter content under treatments with organic fertilizer increased by 11.4%-13.5% and 28.8%-52.0%, respectively, compared to that under NPK treatment. Long-term fertilization did not affect soil bacterial α diversity, but significantly affected soil bacterial ß diversity. Compared with CK and NPK treatment, treatments of M, MNP, and MNPK significantly changed soil bacterial community structure, and increased the relative abundance of Fusobacteria and Anaerobes. Four fertilization treatments increased the relative abundance of Bacteroidetes, and decreased the relative abundance of Actinomyces and Campylobacter, compared to CK. Soil pH was the most important factor affecting soil bacterial community structure. Fertilization-stimulated rare microbial taxa (Pumilomyces and Anaerobes) were more sensitive to changes in different environmental factors and were the main drivers of the formation of community versatility. In conclusion, organic fertilizer improved soil properties and fertility and changed soil bacterial community structure, which are conducive to cultivating healthy soil.
Asunto(s)
Fertilidad , Fertilizantes , Secuenciación de Nucleótidos de Alto Rendimiento , Nutrientes , SueloRESUMEN
Current research has long focused on soil organic carbon and soil aggregates stability. However, the effects of different long-term fertilization on the composition of yellow soil aggregates and the characteristics of the occurrence of organic carbon in the karst region of Southwest China are still unclear. Based on a 25-year long-term located experiment on yellow soil, soil samples from the 0-20 cm soil layer were collected and treated with different fertilizers (CK: unfertilized control; NPK: chemical fertilizer; 1/4 M + 3/4 NP: 25% chemical fertilizer replaced by 25% organic fertilizer; 1/2 M + 1/2 NP: 50% chemical fertilizer replaced by organic fertilizer; and M: organic fertilizer). In water-stable aggregates, soil aggregates stability, total organic carbon (TOC), easily oxidized organic carbon (EOC), carbon preservation capacity (CPC), and carbon pool management index (CPMI) were analyzed. The findings demonstrated that the order of the average weight diameter (MWD), geometric mean diameter (GWD), and macro-aggregate content (R0.25) of stable water aggregates was M > CK > 1/2M +1/2NP > 1/4M +3/4NP> NPK. The MWD, GWD, and R0.25 of NPK treatment significantly decreased by 32.6%, 43.2%, and 7.0 percentage points, respectively, compared to CK treatment. The order of TOC and EOC content in aggregates of different particle sizes was M > 1/2M +1/2NP > 1/4M +3/4NP> CK > NPK, and it increased as the rate of organic fertilizer increased. In macro-aggregates and bulk soil, the CPC of TOC (TOPC) and EOC (EOPC), as well as CPMI, were arranged as M > 1/2M +1/2NP > 1/4M +3/4NP> CK > NPK, but the opposite was true for micro-aggregates. In bulk soil treated with organic fertilizer, the TOPC, EOPC, and CPMI significantly increased by 27.4%-53.8%, 29.7%-78.1%, 29.7-82.2 percentage points, respectively, compared to NPK treatment. Redundancy analysis and stepwise regression analysis show that TOC was the main physical and chemical factor affecting the aggregates stability, and the TOPC in micro-aggregates has the most direct impact. In conclusion, the primary cause of the decrease in SOC caused by the long-term application of chemical fertilizer was the loss of organic carbon in macro-aggregates. An essential method to increase soil nutrient supply and improve yellow soil productivity was to apply an organic fertilizer to increase aggregates stability, storage and activity of SOC in macro-aggregates.
RESUMEN
Fertilisation datasets collected from field experiments (n = 21) in tea-producing areas from 2016 to 2018 were used to build a quantitative evaluation of the fertility of tropical soils (QUEFTS) model to estimate nutrient uptake of tea plants, and to investigate relationships between tea yield and nutrient accumulation. The production of 1000 kg spring tea (based on one bud with two young expanding leaves) required 12.2 kg nitrogen (N), 1.2 kg phosphorus (P), and 3.9 kg potassium (K), and the corresponding internal efficiencies (IEs) for N, P, and K were 82.0, 833.3, and 256.4 kg kg-1. To produce 1000 kg summer tea, 9.1 kg N, 0.8 kg P, and 3.1 kg K were required, and the corresponding IEs for N, P, and K were 109.9, 1250.0, and 322.6 kg kg-1. For autumn tea, 8.8 kg N, 1.0 kg P, and 3.2 kg K were required to produce 1000 kg tea, and the corresponding IEs for N, P, and K were 113.6, 1000.0, and 312.5 kg kg-1. Field validation experiments performed in 2019 suggested that the QUEFTS model can appropriately estimate nutrient uptake of tea plants at a certain yield and contribute to developing a fertiliser recommendation strategy for tea production.
Asunto(s)
Camellia sinensis/química , Nutrientes/química , Té/química , China , Fertilidad , Fertilizantes , Nitrógeno/química , Necesidades Nutricionales , Fósforo/química , Hojas de la Planta/química , Potasio , Estaciones del Año , Suelo/químicaRESUMEN
An analysis was made on the 16-year experimental data from the long term fertilization, experiment of maize on a yellow soil in Guizhou of Southwest China. Four treatments, i. e. , no fertilization (CK), chemical fertilization (165 kg N x hm(-2), 82.5 kg P2O5 x hm(-2), and 82.5 kg K2O x hm(-2), NPK), organic manure (30555 kg x hm(-2), M), and combined applicatioin of chemical fertilizers and organic manure (NPKM), were selected to analyze the variation trends of maize yield and fertilizer use efficiency on yellow soil under effects of different long term fertilization modes, aimed to provide references for evaluating and establishing long term fertilization mode and promote the sustainable development of crop production. Overall, the maize yield under long term fertilization had an increasing trend, with a large annual variation. Treatment NPKM had the best yield-increasing effect, with the maize yield increased by 4075.71 kg x hm(-2) and the increment being up to 139.2%. Long term fertilization increased the fertilizer utilization efficiency of maize. In treatment M, the nitrogen and phosphorus utilization rates were increased significantly by 35.4% and 18.8%, respectively. Treatment NPK had obvious effect in improving potassium utilization rate, with an increment of 20% and being far higher than that in treatments M (8.7%) and NPKM (9.2%). The results showed that long term fertilization, especially the combined application of chemical fertilizers and organic manure, was of great importance in increasing crop yield and fertilizer use efficiency.
Asunto(s)
Biomasa , Fertilizantes , Suelo/química , Zea mays/crecimiento & desarrollo , China , Ecosistema , Factores de Tiempo , Clima Tropical , Zea mays/metabolismoRESUMEN
Long-term mining and smelting activities brought a series of environmental issues into soils in Wanshan mercury (Hg) mining area (WMMA), Guizhou, China. Several studies have been published on the concentrations of Hg in local soils, but a comprehensive assessment of the mass of Hg in soil induced by anthropogenic activities, as presented in this paper, has not been previously conducted. Three districts of WMMA were chosen as the study areas. We summarized previous published data and sampled 14 typical soil profiles to analyze the spatial and vertical distributions of Hg in soil in the study areas. The regional geologic background, direct and indirect Hg deposition, and Hg-polluted irrigation water were considered as the main sources of Hg contaminations in local soils. Furthermore, the enrichment factor (EF) method was applied to assess the extent of anthropogenic input of Hg to soil. Titanium (Ti) was chosen to be the reference element to calculate the EF. Generally, the elevated values of EF were observed in the upper soil layers and close to mine wastes. The total budget of Hg in soil contributed from anthropogenic sources was estimated to be 1,227 t in arable soil and 75 t in natural soil. Our data showed that arable soil was the major sink of anthropogenic Hg in the study area.