Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Avian Pathol ; 53(3): 155-163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38206316

RESUMEN

RESEARCH HIGHLIGHTS: Samples of suspected FAdV-infected waterfowl from farms in Shandong Province were collected from 2019 to 2022.Single infections with FAdV were less frequent than mixed infections.477 out of 792 samples (60.23%) tested positive for FAdV nucleic acids.Detection rate of FAdV was 65.47% in fattening duck farms, 55.73% in breeder duck farms and 54.55% in fattening geese farms.


Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Enfermedades de las Aves de Corral , Animales , Patos , Gansos , Pollos , Infecciones por Adenoviridae/epidemiología , Infecciones por Adenoviridae/veterinaria , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Aviadenovirus/genética , China/epidemiología
2.
Avian Pathol ; 52(6): 389-400, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37314823

RESUMEN

ABSTRACTPoultry production in China has been experiencing a high incidence of broiler arthritis /tenosynovitis caused by avian orthoreovirus (ARV) since 2013. In the spring of 2020 severe arthritis cases from broiler flocks were identified in a large-scale commercial poultry company in Anhui Province, China. Diseased organs from dead birds were sent for diagnosis to our laboratory. ARVs, including seven broiler-isolates and two breeder-isolates, were successfully harvested and sequenced. Interestingly, the genotypes of ARVs isolated from infected chickens were inconsistent between different flocks, or even between different houses on the same flocks. Pathogenicity testing in chicks confirmed that the seven broiler-isolates were pathogenic strains, which could cause arthritis in infected chickens. Subsequently, a total of 89.66% serum samples collected from apparently healthy adult broiler flocks not vaccinated against ARV tested positive for ARV antibodies, suggesting that low and high virulence reovirus strains may be co-circulating in the farm. To this end, we collected dead embryos of unhatched chicken eggs for pathogen tracing, and the two ARV breeder-isolates isolated indicated that vertical transmission from breeders to progeny should not be underestimated for the prevalence of ARV within broiler flocks. The findings have implications for the evidenced-based formulation of prevention and control strategies.


Asunto(s)
Artritis , Enfermedades de las Aves de Corral , Animales , Pollos , Aves de Corral , Artritis/veterinaria , Genotipo , China/epidemiología
3.
Int J Hyperthermia ; 40(1): 2263672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37806666

RESUMEN

Mechanical high-intensity focused ultrasound (M-HIFU), which includes histotripsy, is a non-ionizing, non-thermal ablation technology that can be delivered by noninvasive methods. Because acoustic cavitation is the primary mechanism of tissue disruption, histotripsy is distinct from the conventional HIFU techniques resulting in hyperthermia and thermal injury. Phase I human trials have shown the initial safety and efficacy of histotripsy in treating patients with malignant liver tumors. In addition to tissue ablation, a promising benefit of M-HIFU has been stimulating a local and systemic antitumor immune response in preclinical models and potentially in the Phase I trial. Preclinical studies combining systemic immune therapies appear promising, but clinical studies of combinations have been complicated by systemic toxicities. Consequently, combining M-HIFU with systemic immunotherapy has been demonstrated in preclinical models and may be testing in future clinical studies. An additional alternative is to combine intratumoral M-HIFU and immunotherapy using microcatheter-placed devices to deliver both M-HIFU and immunotherapy intratumorally. The promise of M-HIFU as a component of anti-cancer therapy is promising, but as forms of HIFU are tested in preclinical and clinical studies, investigators should report not only the parameters of the energy delivered but also details of the preclinical models to enable analysis of the immune responses. Ultimately, as clinical trials continue, clinical responses and immune analysis of patients undergoing M-HIFU including forms of histotripsy will provide opportunities to optimize clinical responses and to optimize application and scheduling of M-HIFU in the context of the multi-modality care of the cancer patient.


Asunto(s)
Carcinoma Hepatocelular , Ultrasonido Enfocado de Alta Intensidad de Ablación , Neoplasias Hepáticas , Humanos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Inmunoterapia
4.
BMC Vet Res ; 19(1): 173, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741982

RESUMEN

Goose astrovirus 2 (GAstV-2) causes visceral gout in goslings and has resulted in significant economic losses in the goose industry of China since its outbreak in 2017. To further investigate the distribution and localization of GAstV-2 in different tissues at different times, a monoclonal antibody (mAb)-based immunohistochemical (IHC) assay was developed to detect GAstV-2. A total of 80 1-day-old healthy goslings were inoculated with GAstV-2 via the oral (n = 40) and intramuscular routes (n = 40). GAstV-2 in the tissues of interest was detected using the established IHC assay. The results showed that positive signals were detected in most tissues at 1 day post-infection (dpi). Viral antigens were mainly distributed in the cytoplasm, and the staining intensity was higher in the renal tubular epithelial cells than in other cells. Taken together, our data demonstrated that GAstV-2 has a broad tissue tropism and primarily targets the kidneys. These results are likely to provide a scientific basis for further elucidation of the pathogenesis of GAstV-2.


Asunto(s)
Avastrovirus , Gansos , Animales , Antígenos Virales , Anticuerpos Monoclonales , Bioensayo/veterinaria
5.
Bioconjug Chem ; 33(6): 1232-1240, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35586918

RESUMEN

In China, drastic losses in the economy have been caused by the Tembusu virus (TMUV), the causative agent of the egg-drop syndrome, to the duck-raising industry. To succeed in preventing and controlling infections, extant techniques must be upgraded to achieve fast detection of viruses. This work is the first attempt to present the development of a recombinase polymerase amplification (RPA)-based clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas13a approach for the TMUV infection diagnosis, where the CRISPR-Cas13a system is exploited, i.e., the programmability of CRISPR RNA (crRNA) and the promiscuous RNase collateral cleavage of Cas13a upon recognition of target RNAs. A prokaryotic expression system was utilized for the expression of LwCas13a soluble protein, while its purification was accomplished by nickel-nitrilotriacetic acid (Ni-NTA) agarose. In the design of a particular crRNA, the target used was the TMUV NS3 RNA transcribed in vitro. The signals used for the Cas13a activity validation were an RNA-bound fluorescent group (single-stranded) and a quenching fluorophore. In the present work, a specific high-sensitivity enzymatic molecular detection system termed RPA-based CRISPR-Cas13a was established by combining Cas13a with T7 transcription and RPA for sensitive detection of TMUV at room temperature. This system can detect 102 copies of the target TMUV DNA standard/µL within 50 min. A comparison revealed that the specificity was superior to that for other avian viruses. Furthermore, the RPA-based CRISPR-Cas13a detection system was successfully applied for clinical samples, and its performance is comparable to the reverse-transcriptase real-time quantitative polymerase chain reaction (RT-qPCR). Being satisfyingly reliable, simple, specific, and sensitive, our RPA-based CRISPR-Cas13a detection system could be expanded and universalized for identifying other viruses, enabling quick detection in the field with a portable lateral flow dipstick.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Flavivirus , Sistemas CRISPR-Cas/genética , Flavivirus/genética , ARN , Recombinasas
6.
Nat Mater ; 19(6): 605-609, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32313265

RESUMEN

Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials1-3, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.

7.
Sens Actuators A Phys ; 332(Pt 2)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937991

RESUMEN

In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part I of this two part review, firstly, active and passive nanomaterials and nanostructures for acoustics are presented. Following that, representative applications of nanoacoustics including material property characterization, nanomaterial/nanostructure manipulation, and sensing, are discussed in detail. Finally, a summary is presented with point of views on the current challenges and potential solutions in this burgeoning field.

8.
Sens Actuators A Phys ; 332(Pt 2)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937992

RESUMEN

In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.

9.
Sensors (Basel) ; 21(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069613

RESUMEN

As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.


Asunto(s)
Enfermedad de la Arteria Coronaria , Ultrasonografía Intervencional , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Diseño de Equipo , Humanos , Transductores , Ultrasonografía
10.
J Stroke Cerebrovasc Dis ; 30(7): 105828, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34010777

RESUMEN

Central retinal artery occlusion (CRAO) is a form of acute ischemic stroke which affects the retina. Intravenous thrombolysis is emerging as a compelling therapeutic approach. However, it is not known which patients may benefit from this therapy because there are no imaging modalities that adequately distinguish viable retina from irreversibly infarcted retina. The inner retina receives arterial supply from the central retinal artery and there is robust collateralization between this circulation and the outer retinal circulation, provided by the posterior ciliary circulation. Fundus photography can show canonical changes associated with CRAO including a cherry-red spot, arteriolar boxcarring and retinal pallor. Fluorescein angiography provides 2-dimensional imaging of the retinal circulation and can distinguish a complete from a partial CRAO as well as central versus peripheral retinal non-perfusion. Transorbital ultrasonography may assay flow through the central retinal artery and is useful in the exclusion of other orbital pathology that can mimic CRAO. Optical coherence tomography provides structural information on the different layers of the retina and exploratory work has described its utility in determining the time since onset of ischemia. Two experimental techniques are discussed. 1) Retinal functional imaging permits generation of capillary perfusion maps and can assay retinal oxygenation and blood flow velocity. 2) Photoacoustic imaging combines the principles of optical excitation and ultrasonic detection and - in animal studies - has been used to determine the retinal oxygen metabolic rate. Future techniques to determine retinal viability in clinical practice will require rapid, easily used, and reproducible methods that can be deployed in the emergency setting.


Asunto(s)
Angiografía con Fluoresceína , Imagen de Perfusión , Fotograbar , Oclusión de la Arteria Retiniana/diagnóstico por imagen , Arteria Retiniana/diagnóstico por imagen , Tomografía de Coherencia Óptica , Ultrasonografía , Animales , Velocidad del Flujo Sanguíneo , Toma de Decisiones Clínicas , Circulación Colateral , Humanos , Técnicas Fotoacústicas , Valor Predictivo de las Pruebas , Pronóstico , Flujo Sanguíneo Regional , Arteria Retiniana/fisiopatología , Oclusión de la Arteria Retiniana/fisiopatología , Oclusión de la Arteria Retiniana/terapia
11.
J Cell Biochem ; 121(12): 4756-4771, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32056279

RESUMEN

Angiogenesis and vasculogenic mimicry (VM) are the main causes of tumor metastasis and recurrence. In this study, we investigated the antiangiogenesis and anti-VM formation of a novel microtubule depolymerizing agent, DHPAC, as well as combretastatin A4 (CA4, a combretastatin derivate) in non-small-cell lung cancer (NSCLC), subsequently elucidating the underlying mechanisms. In human umbilical vein endothelial cells (HUVECs), DHPAC could enter cells and inhibit proliferation, migration, and angiogenesis in the presence and absence of conditioned medium from H1299 cells. Interestingly, the inhibition was enhanced under the stimulation of the conditioned medium. Under hypoxia or normoxia, DHPAC suppressed signal transducer and activator of transcription 3 phosphorylation and reduced vascular endothelial growth factor (VEGF) expression and secretion from HUVECs, thus impeding the activation of the downstream signal transduction pathway of VEGF/VEGFR2. However, JNK inhibitors reversed the inhibitory effect of DHPAC on the angiogenesis, suggesting that DHPAC regulated angiogenesis through activating JNK. In H1299 cells, DHPAC could inhibit proliferation, migration, invasion, and the formation of VM. In addition, DHPAC inhibited the phosphorylation of FAK and AKT and decreased the expressions of VEGF, matrix metalloproteinase 2 (MMP2), MMP9 and Laminin 5, suggesting that DHPAC inhibited VM formation via the FAK/AKT signaling pathway. In addition, CA4 showed a similar effect as DHPAC against angiogenesis and VM formation. These new findings support the use of microtubule destabilizing agents as a promising strategy for cancer therapy.

12.
Sensors (Basel) ; 20(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120902

RESUMEN

One of the great advancements in the applications of piezoelectric materials is the application for therapeutic medical ultrasound for sonothrombolysis. Sonothrombolysis is a promising ultrasound based technique to treat blood clots compared to conventional thrombolytic treatments or mechanical thrombectomy. Recent clinical trials using transcranial Doppler ultrasound, microbubble mediated sonothrombolysis, and catheter directed sonothrombolysis have shown promise. However, these conventional sonothrombolysis techniques still pose clinical safety limitations, preventing their application for standard of care. Recent advances in sonothrombolysis techniques including targeted and drug loaded microbubbles, phase change nanodroplets, high intensity focused ultrasound, histotripsy, and improved intravascular transducers, address some of the limitations of conventional sonothrombolysis treatments. Here, we review the strengths and limitations of these latest pre-clincial advancements for sonothrombolysis and their potential to improve clinical blood clot treatments.


Asunto(s)
Ultrasonografía Doppler Transcraneal/métodos , Animales , Medios de Contraste/metabolismo , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Humanos , Microburbujas , Trombosis/metabolismo , Trombosis/patología , Transductores , Ultrasonografía/métodos
13.
Phys Rev Lett ; 122(25): 257601, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31347866

RESUMEN

Thin film flexoelectricity is attracting more attention because of its enhanced effect and potential application in electronic devices. Here we find that a mechanical bending induced flexoelectricity significantly modulates the electrical transport properties of the interfacial two-dimensional electron gas (2DEG) at the LaAlO_{3}/SrTiO_{3} (LAO/STO) heterostructure. Under variant bending states, both the carrier density and mobility of the 2DEG are changed according to the flexoelectric polarization direction, showing an electric field effect modulation. By measuring the flexoelectric response of LAO, it is found that the effective flexoelectricity in the LAO thin film is enhanced by 3 orders compared to its bulk. These results broaden the horizon of study on the flexoelectricity effect in the hetero-oxide interface and more research on the oxide interfacial flexoelectricity may be stimulated.

14.
Ultrason Imaging ; 41(4): 191-205, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30990118

RESUMEN

Intravascular ultrasound (IVUS) is an important diagnostic method for coronary disease. The lateral and axial resolutions of IVUS systems under study are typically ~120 and ~30 µm, respectively. The lateral resolution has a lower quality than the axial one and is restricted by the aperture size of transducers. In addition, this resolution is difficult to further improve physically. However, IVUS is inherently suitable for lateral deconvolution because of its circular imaging area. In this paper, magnitude-based deconvolution was demonstrated to be feasible in IVUS imaging to improve the lateral resolution. The deconvolution process was first simulated to determine the highest feasible resolution. Next, the method was applied to a real system to validate the feasibility. The lateral resolution was improved significantly, that is, 2°-separated targets could be discerned using a transducer with 4.2° -6 dB lateral resolution.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía Intervencional/métodos , Simulación por Computador , Diseño de Equipo , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados
15.
Arch Virol ; 163(12): 3463-3466, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30209584

RESUMEN

Avian orthoreovirus (ARV) has been considered as a significant pathogen causing great infectious diseases to the avian, like broiler and waterfowl. The genome of this novel ARV(Reo/SDPY/Goose) was completely sequenced by next-generation sequencing. The complete genome was found to be 23517 bp in length with 10 segments. Although the Reo/SDPY/Goose was isolated from the gosling, it shares great similarity, no matter which segment within the genome, with those published as avian-origin reovirus. Genomic analysis revealed that this virus was distinct from published ARV strains and met criteria to become a novel ARV strain.


Asunto(s)
Enfermedades de las Aves/virología , Gansos/virología , Genoma Viral , Orthoreovirus Aviar/aislamiento & purificación , Infecciones por Reoviridae/veterinaria , Animales , Animales Salvajes/virología , Secuencia de Bases , China , Sistemas de Lectura Abierta , Orthoreovirus Aviar/clasificación , Orthoreovirus Aviar/genética , Filogenia , Infecciones por Reoviridae/virología , Secuenciación Completa del Genoma
16.
IEEE Trans Ind Electron ; 64(9): 7304-7312, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33479553

RESUMEN

A piezoelectric sensor with a floating element was developed for direct measurement of flow induced shear stress. The piezoelectric sensor was designed to detect the pure shear stress while suppressing the effect of normal stress generated from the vortex lift-up by applying opposite poling vectors to the piezoelectric elements. During the calibration stage, the prototyped sensor showed a high sensitivity to shear stress (91.3 ± 2.1 pC/Pa) due to the high piezoelectric coefficients (d 31=-1330 pC/N) of the constituent 0.67Pb(Mg1∕3Nb2∕3)O3-0.33PbTiO3 (PMN-33%PT) single crystal. By contrast, the sensor showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the sensing structure. The usable frequency range of the sensor is up to 800 Hz. In subsonic wind tunnel tests, an analytical model was proposed based on cantilever beam theory with an end-tip-mass for verifying the resonance frequency shift in static stress measurements. For dynamic stress measurements, the signal-to-noise ratio (SNR) and ambient vibration-filtered pure shear stress sensitivity were obtained through signal processing. The developed piezoelectric shear stress sensor was found to have an SNR of 15.8 ± 2.2 dB and a sensitivity of 56.5 ± 4.6 pC/Pa in the turbulent flow.

17.
Prog Mater Sci ; 68: 1-66, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25530641

RESUMEN

Relaxor-PbTiO3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients (d33 > 1500 pC/N) and electromechanical coupling factors (k33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials' behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor-PT crystals are summarized to guide on-going and future research in the development of relaxor-PT crystals for the next generation electroacoustic transducers.

18.
Sensors (Basel) ; 14(11): 20825-42, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25375755

RESUMEN

For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.


Asunto(s)
Aeronaves/instrumentación , Aumento de la Imagen/instrumentación , Ensayo de Materiales/instrumentación , Sistemas Microelectromecánicos/instrumentación , Transductores , Ultrasonografía/instrumentación , Medios de Contraste , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Ondas de Radio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Brain Res ; 1835: 148935, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38609031

RESUMEN

OBJECTIVES: Impulsive behavior is the precursor of many psychiatric and neurological conditions. High levels of impulsive behavior will increase health risk behavior and related injuries. Impulsive behavior is produced and regulated by central and peripheral biological factors, and oxidative stress (OS) can aggravate it. However, previous studies only showed that impulsive behavior was related to the level of the peripheral OS. Therefore, this study aims to clarify the relationship between OS and impulsive behavior in the brain and peripheral blood. METHODS: We recruited 64 Chinese men. We measured superoxide dismutase (SOD) (including copper, zinc and manganese) and nitric oxide synthase (NOS) (including total, inducible and constitutive) in cerebrospinal fluid (CSF) and plasma. The Barratt Impulsiveness Scale version 11 (BIS-11) was used to evaluate impulsive behavior. The relationship between OS and impulsive behavior was evaluated by partial correlation analysis and stepwise multiple regression analysis. RESULTS: Partial correlation analysis showed that the ratio of total NOS-to-MnSOD and iNOS-to-MnSOD in CSF were negatively correlated with the BIS-11 motor scores (r = -0.431, p = -0.001; r = -0.434, p = -0.001). Stepwise multiple regression analysis showed that the ratio of CSF iNOS-to-MnSOD was the most influential variable on the BIS-11 motor scores(ß = -0.434, t = -3.433, 95 %CI(-0.374, -0.098), p = 0.001). CONCLUSIONS AND RELEVANCE: The imbalance of central oxidation and antioxidation is related to impulsive behavior, which broadens our understanding of the correlation between impulsive behavior and OS.


Asunto(s)
Conducta Impulsiva , Estrés Oxidativo , Superóxido Dismutasa , Humanos , Masculino , Conducta Impulsiva/fisiología , Adulto , Superóxido Dismutasa/líquido cefalorraquídeo , Superóxido Dismutasa/sangre , Adulto Joven , Estrés Oxidativo/fisiología , Antioxidantes/metabolismo , China , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Pueblo Asiatico , Óxido Nítrico Sintasa de Tipo II , Pueblos del Este de Asia
20.
Ultrasonics ; 141: 107344, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772060

RESUMEN

Ultrasonic microneedle patches, a class of ultrasound-driven transdermal drug delivery systems, are promising in addressing bacterial biofilms. This device has been proven to be more effective in treating Staphylococcus aureus biofilms than drug in free solution. However, there exists a notable gap in understanding how various excitation conditions and material parameters affect drug delivery efficiency. This study aims to fill this void by conducting an comprehensive multi-physics numerical analysis of ultrasonic microneedle patches, with the ultimate goal of enhancing drug delivery. First, we investigate the impact of various ultrasound frequencies on drug penetration depths. The findings reveal that local resonance can accelerate drug release within a shorter time window (first 1.5 h), whereas non-resonant frequencies enable more profound and prolonged diffusion. This information is crucial for medical professionals in selecting the most effective frequency for optimal drug administration. Furthermore, our investigation extends to the effects of applied voltage on temperature distribution, a critical aspect for ensuring medical safety during the application of these patches. Additionally, we examine how particles of different sizes respond to acoustic pressure and streaming fields, providing valuable insights for tailoring drug delivery strategies to specific therapeutic needs. Overall, our findings offer comprehensive guidelines for the effective use of ultrasonic microneedle patches, potentially shifting the paradigm in patient care and enhancing the overall quality of life.


Asunto(s)
Biopelículas , Sistemas de Liberación de Medicamentos , Agujas , Staphylococcus aureus , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Staphylococcus aureus/fisiología , Ondas Ultrasónicas , Antibacterianos/administración & dosificación , Administración Cutánea
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda