Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Opt Lett ; 49(11): 3026-3029, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824319

RESUMEN

We investigate the dynamical blockade in a nonlinear cavity and demonstrate the connection between the correlation function g(2)(t) and system parameters in the entire nonlinear region. Utilizing the Liouville exceptional points (LEPs) and quantum dynamics, a near-perfect single-photon blockade (1PB) can be achieved. By fine-tuning system parameters to approach the second-order LEP (LEP2), we improved single-photon statistics in both weak and strong nonlinearity regimes, including a significant reduction of g(2)(t) and a pronounced increase in the single-photon occupation number. In the strong nonlinearity region, the maximum photon population may correspond to stronger antibunching effect. Simultaneously, the time window and period of blockade can be controlled by selecting detuning based on the LEP2. Furthermore, the 1PB exhibits robustness against parameter fluctuations, and this feature can be generalized to systems for implementing single-photon sources with nonharmonic energy levels.

2.
J Chem Phys ; 161(4)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39037134

RESUMEN

We present a first-principles study of the structural, electronic, and magnetic properties of TM(PAH)0/+ (TM = Fe, Co, Ni; PAH = C10H8, C16H10, C24H12, C32H14) complexes and explore the laser-induced spin dynamics as well as their stability with respect to various laser parameters. For each complex, the most stable configuration shows that the TM atom prefers to adsorb at the hollow site of the carbon ring with a slight deviation from the center. The electronic structure and spin localization of the complexes are found to be largely affected by the TM type. Driven by various laser pulses, spin-crossover scenarios are achieved in all structures, while spin-transfer between TM and PAH is achieved in Ni(C10H8), Ni(C16H10), and Ni(C24H12). The influence of the laser energy and chirp on the dynamics is also investigated, providing important information regarding the stability and sensitivity of the dynamical process. All results are believed to reveal the physics nature of the TM-PAH systems, to guide the experimental realization of their ultrafast spin dynamics and thus to promote their applications in future spintronics.

3.
Appl Opt ; 63(3): 604-610, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294370

RESUMEN

In this work, a spatiotemporal metasurface is proposed to manipulate the path of photons flexibly. The spatial modulation is induced by the rectangle silicon units aligned on silica in a manner with a phase gradient only for y-polarized photons, and the temporal modulation is contributed by the pumps of constructing Kerr dynamic gratings. By quantizing designed metasurfaces, the analytical solutions of output photon states can be derived correspondingly. Reversal design could be implemented by tailoring the profile of higher harmonics to infer the intensity of pumps, size of meta-atoms, and initial state. The path-polarization entanglement and correlations of output photons are realized, and then a CNOT gate is obtained by utilizing the deflection of the photon path. This work provides a scheme to deal with the spatiotemporal metasurfaces and expands the applications of metasurfaces in the quantum realm.

4.
J Acoust Soc Am ; 156(2): 830-838, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116353

RESUMEN

In this work, five-waveguide (five-WG) acoustic couplers with planar configurations are designed based on quantumlike adiabatic transfer, through which the incident waves can efficiently transfer from the middle WG to the other two WGs with a customized intensity ratio. The five WGs are connected by space-varying cylindrical scatterers, and the coupling between two adjacent WGs is determined by two Gaussian pulses with a certain delay. Since the evolution process of acoustic waves can adiabatically follow the dark state, the coupler could have a broadband and stable performance. Moreover, it is easy to change the ratio of the beam splitting by utilizing different peak values of the coupling between the middle three WGs. The agreements between analytical, numerical, and experimental results confirm the feasibility of the design, providing an effective solution for high-performance acoustic beam splitters with customizable output intensities.

5.
Opt Express ; 30(23): 42614-42623, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366712

RESUMEN

Most active chiral metasurfaces operate in a single band and have an unidirectionally tunable circular dichroism (CD). Here, we propose a zigzag metasurface composed of a Z-shaped metallic strip and a L-shaped graphene strip to realize the dual-band tunable and strong CD. Two strong CD values of -0.88 and 0.88 are found at f1 = 0.86 THz and f2 = 1.23 THz, respectively. The strengths and resonant frequencies of these two CD signals can be tuned by varying graphene's Fermi energy (EF). Strikingly, the CD value at 0.86 THz undergoes a continuous adjustment in a large range from 0.79 to -0.88 when EF increases from 0.32 eV to 1.00 eV, implying that the proposed metasurface supports the switching of CD signal between on-, off- and reverse-states. Based on the strong CD signals, the capability of the metasurface as a biosensor to detect Avian Influenza viruses is demonstrated. This work will advance the development of broadband tunable chiral-optical devices.


Asunto(s)
Grafito , Dispositivos Ópticos , Dicroismo Circular , Metales
6.
Opt Express ; 30(26): 47856-47866, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558704

RESUMEN

We demonstrate multi-channel metasurface holograms, where the pixels of holographic images are represented by the focal points of metalens, leading to the nanoscale resolution. The required phase profiles are implemented by elaborately arranging the hybrid all-dielectric meta-atoms with specific orientation angles. For verification, two-channel single-color images are reconstructed on the focal plane of the metalens by polarization control. Alternatively, three-channel color holograms are exhibited by manipulating the incident wavelengths. More uniquely, the metalens can be further engineered to generate polarization-wavelength multiplexing color holograms in six channels. Our work provides an effective approach to reconstructing holographic images and enables potential applications including color display, information engineering, and optical encryption.

7.
Opt Express ; 30(16): 29022-29029, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299087

RESUMEN

Circular dichroism (CD) is originally obtained from three-dimensional spiral structures by simultaneously exciting electric and magnetic resonances. To simplify construction, multilayer stacked asymmetric structures and the symmetric structures relying on oblique incidence are proposed for enhancing CD. Herein, we achieved the enhancement of dual-waveband CD by adding a Ge2Sb2Te5 (GST) layer on the top of a Z-shape gold array in a normally incident system. Benefited from the polarization selective excitations of electric and magnetic dipole resonances, the CD in a simple planar structure is immensely enhanced from near zero to 0.73 at 1.58 µm. Furthermore, the CD strengths is dynamically tuned by controlling the phase of GST. With the GST phase transition from amorphous (a-GST) to crystalline state (c-GST), CD magnitudes are switched by about 0.73 and 0.27 at dual wavebands respectively. The enhancement of CD by adding a layer on a simple planar array offers a new method for designing planar metasurfaces with strong chirality.

8.
Opt Express ; 30(10): 16229-16241, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221471

RESUMEN

In this work, we design an ultrathin 2-bit anisotropic Huygens coding metasurface (AHCM) composed by bilayer metallic square-ring structures for flexible manipulation of the terahertz wave. Based on the polarized-dependent components of electric surface admittance and magnetic surface impedance, we confirm that both the electric and magnetic resonances on coding meta-atoms are excited, so as to provide a full phase coverage and significantly low reflection. By encoding the elements with distinct coding sequences, the x- and y-polarized incident waves are anomalously refracted into opposite directions. More uniquely, we also demonstrate that the designed AHCM can be utilized as a transmission-type quarter-wave plate. The proposed metasurface paves a new way toward multifunctional terahertz wavefront manipulation.

9.
Opt Lett ; 47(7): 1907-1910, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363766

RESUMEN

Circular dichroism (CD) is required in the applications of biological detection, analytical chemistry, etc. Here, we numerically demonstrated large-range switchable CD by controlling the phase change of Ge2Sb2Te5 (GST) in a zigzag array. At the amorphous state of GST (a-GST), the strong and dual-waveband CD effects are realized via the selective excitations of electric, magnetic, and toroidal resonances. With the transition from a-GST to crystalline state GST, CD strengths are tailored dynamically in large ranges. In detail, the CD magnitudes change by about 0.93 and the modulation depths exceed 94% at dual wavebands. The strong CD effects and large-range switch capability in the GST-based metasurfaces will boost the development of active chiroptical devices.


Asunto(s)
Electricidad , Dicroismo Circular
10.
Appl Opt ; 61(2): 471-477, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35200884

RESUMEN

In this paper, we present a tunable dual-band perfect metamaterial absorber working in the infrared band by integrating a metallic split-ring-groove resonator array with a liquid crystal (LC) layer atop a metal substrate. By varying the height of the central nanodisks, the absorptivity of the dual-band absorption peaks can be simultaneously adjusted. The dual-band resonance frequencies of the proposed absorber exhibit continuous tunability by adjusting the refractive index of the LC, which can be controlled by applying external voltage. The mechanism of the perfect absorption is attributed to the gap plasmonic resonance coupling regime. The presented absorber exhibits good tolerance to incidence angles up to 60° and shows polarization dependent performance, which may offer promising applications in sensing, modulator, and optical absorption switching in the infrared regime.

11.
Appl Opt ; 61(26): 7558-7564, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36256353

RESUMEN

A reconfigurable anisotropic coding metasurface composed of a graphene layer and anisotropic Jerusalem-cross metallic layer is proposed for dynamic and complete multi-channel terahertz wavefront manipulation. By controlling the Fermi energy of graphene, continuous amplitude modulation is realized for the coding elements with certain phase responses. By arranging anisotropic phase coding elements with a specific coding sequence and changing the Fermi energy of graphene, the proposed metasurface can dynamically control multi-channel reflection beams with designed power distribution and simultaneously manipulate the scattering pattern from diffusion to mirror scattering under x- and y-polarized incidence, respectively. Compared with the dynamic phase modulation metasurface, such a tunable metasurface uses three degrees of freedom, including the polarization, phase, and amplitude responses to fully control the reflected wavefronts, which may have promising applications in tunable terahertz multi-functional holograms and multi-channel information communication.

12.
Opt Express ; 29(11): 17258-17268, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154271

RESUMEN

Polarization modulation and multichannel beam generation are crucial in multichannel communication and high-resolution imaging at THz frequency. In this work, we present a polarization-reprogrammable coding metasurface composed of VO2/Au composite concentric rings (CCRs). Owing to the phase-change property of VO2, the CCR is designed as a digital coding element for the polarization conversion. When VO2 remains insulator state at room temperature, the y-polarized incident wave is transformed into x-polarized wave, which can be regarded as digital state 0. When VO2 converts into metal state at critical temperature (68 °C), the polarization of reflected wave stays unchanged, corresponding to digital state 1. Any desired linear polarization state of reflected beam is achieved by taking advantage of different coding sequences in a programmable manner. Furthermore, by combining phase gradient with polarization coding states, we propose an anisotropic programmable metasurface to control the multi-channel reflected beams dynamically. By arranging distinct coding sequences, we show that the EM reflected beams can be manipulated flexibly. The proposed programmable metasurface paves new ways towards THz polarization manipulation, signal detection and information communication.

13.
Opt Express ; 29(2): 2288-2298, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726427

RESUMEN

In this paper, we utilize a heterostructured graphene/hBN/graphene nanodisk array to implement an electrically tunable absorber in and out of the Reststrahlen band (RSB) region of hBN. Tuning of phonon-type resonance absorption in the RSB region is achieved through phonon-plasmon-polariton hybridization. The hybrid phonon mode enabled a 290 nm shift of the resonant wavelength, and the sensitivity of absorption peak to the electrical control is 362.5 nm/eV. Simultaneously, the nearly perfect absorption is obtained in the condition of high chemical potential of graphene. Moreover, the plasmon polaritons are strongly modified by phonon polaritons of hBN, so the FWHM of absorption peaks out of the RSB region reduce to 45-49 nm, and the maximum Q of absorption reaches 220.44 at EF=0.65 eV, which is paving a way toward coherent emission at the atmospheric transparent band. Importantly, graphene-assisted hyperbolic phonon polaritons of hBN will enable future phonon devices with high optical performance and wide tunability.

14.
Appl Opt ; 60(16): 4986-4992, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143062

RESUMEN

Optical Tamm state with sharp reflection dip provides the sensing potential combined with high sensitivity. In this paper, we numerically demonstrate that narrowband refractive index sensing can be realized in a distributed Bragg reflector (DBR) structure with hexagonal boron nitride (hBN). Here, we show that the sensitivity and narrowband properties can not only be regularly governed by different analyte thickness but also exhibit dependence on the number of DBR pairs and the thickness of the hBN layer. With varying the analyte index and optimized analyte thickness, the deep reflectance dip can be sustained with the sensitivity (figure of merit, FOM) close to 3.02 µm/RIU (1093/RIU). In addition, the different analyte categories can be detected through adjusting the thickness of the analyte-filled cavity. High sensitivity, combined with ultra-high FOM originated from strong Tamm phonon mode, offers a promising platform to detect the smallest variation of the refractive index.

15.
Molecules ; 26(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671512

RESUMEN

The electronic structures and transition properties of three types of triangle MoS2 clusters, A (Mo edge passivated with two S atoms), B (Mo edge passivated with one S atom), and C (S edge) have been explored using quantum chemistry methods. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of B and C is larger than that of A, due to the absence of the dangling of edge S atoms. The frontier orbitals (FMOs) of A can be divided into two categories, edge states from S3p at the edge and hybrid states of Mo4d and S3p covering the whole cluster. Due to edge/corner states appearing in the FMOs of triangle MoS2 clusters, their absorption spectra show unique characteristics along with the edge structure and size.


Asunto(s)
Teoría Funcional de la Densidad , Disulfuros/química , Molibdeno/química , Electrónica , Modelos Moleculares , Tamaño de la Partícula , Propiedades de Superficie
16.
Opt Express ; 28(22): 33475-33489, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33115009

RESUMEN

Quantum optical methods have great potential for highly efficient discrimination of chiral molecules. We propose quantum interference-based schemes of enantio-discrimination under microwave regime among molecular rotational states. The quantum interference between field-driven one- and two-photon transitions of two higher states is designed to be constructive for one enantiomer but destructive for the other, since a certain transition dipole moment can be set to change sign with enantiomers. Therefore, two enantiomers can evolve into entirely different states from the same ground state. Through strengthening the constructive interference, the quantum Zeno effect is found in one enantiomer and then its excitation is suppressed, which also enables the enantio-discrimination. We simulate the schemes for differentiating between S and R enantiomers of 1, 2-propanediol (C3H8O2) molecules. With the analysis of the phase sensitivity to microwave fields and the effect of energy relaxations, the highly efficient enantio-discrimination of the 1, 2-propanediol molecules may be achieved.

17.
Opt Express ; 28(2): 1954-1969, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121896

RESUMEN

We propose a one-step scheme for implementing multi-qubit phase gates on microwave photons in multiple resonators mediated by a superconducting bus in circuit quantum electrodynamics (QED) system. In the scheme, multiple single-mode resonators carry quantum information with their vacuum and single-photon Fock states, and a multi-level artificial atom acts as a quantum bus which induces the indirect interaction among resonators. The method of pulse engineering is used to shape the coupling strength between resonators and the bus so as to improve the fidelity and robustness of the scheme. We also discuss the influence of finite coherence time for the bus and resonators on gate fidelity respectively. Finally, we consider the suppression of unwanted transitions and propose the method of optimized detuning compensation for offsetting unwanted transitions, showing the feasibility of the scheme within the current experiment technology.

18.
Opt Lett ; 45(5): 1200-1203, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32108805

RESUMEN

With a resonant amplitude-modulation field on two Rydberg atoms, we propose a Rydberg antiblockade (RAB) regime, where the Rabi oscillation between collective ground and excited states is induced. A controlled-Z gate can be yielded through a Rabi cycle. Further, several common issues of the RAB gates are solved by modifying the parameter relation. The gate fidelity and gate robustness against the control error are enhanced with a shaped pulse. The requirement of control precision of the Rydberg-Rydberg interaction strength is relaxed. In addition, the atomic excitation is restrained and therefore the gate robustness against atomic decay is enhanced.

19.
Phys Chem Chem Phys ; 22(37): 21412-21420, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32940302

RESUMEN

Using the density functional theory (DFT) calculations, we find that  Janus group-III chalcogenide monolayers can serve as a suitable substrate for silicene, and the Dirac electron band properties of silicene are also fully preserved. The maximum opened band gap can reach 179 meV at the Dirac point due to the interaction of silicene and the polar two-dimensional (2D) substrate. In addition, the electronic band structure of the heterostructure can be modulated by applying an electric field where its predicted band gap increases or decreases according to the direction of the applied external electric field. Furthermore, an insight into the electron structures can be understood by analyzing the electron energy-loss (EEL) spectra. From these results, we also predict that heterostructures with polar 2D substrates have broad application prospects in multi-functional devices. Besides, Janus group-III chalcogenide monolayers can be used as good substrates for growing silicene and the modulation of the electronic structure can also be applied to nanodevices and optoelectronic devices.

20.
Appl Opt ; 59(13): 3825-3832, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400649

RESUMEN

In this paper, we demonstrate a polarization control device with different functions for oppositely propagating directions by a two-layer twisted silicon column array separated by a silica layer. The proposed structure can rotate the electric field directions of polarized linear wave backwards by 45º and serve as a linear-to-circular converter for the polarized linear wave forwards . The physical mechanism is discussed by the Jones matrix, and the numerical results show that the maximum transmissions ${ \gt }{0.9}$>0.9 for the two functions of the proposed structure are achieved in the near-infrared region. The high transmission originates from the all-dielectric materials, which is a major advance compared with previously reported bifunctional converters. The proposed simply shaped device with high transmission efficiency has potential applications in optical imaging, sensing, etc.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda