Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2219630120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716379

RESUMEN

Endothelial progenitor cells (EPCs) play an important role in vascular repair and re-endothelialization after vessel injury. EPCs in blood vessels are subjected to cyclic stretch (CS) due to the pulsatile pressure, but the role of CS in metabolic reprogramming of EPC, particularly its vascular homing and repair, is largely unknown. In the current study, physiological CS applied to EPCs at a magnitude of 10% and a frequency of 1 Hz significantly promoted their vascular adhesion and endothelial differentiation. CS enhanced mitochondrial elongation and oxidative phosphorylation (OXPHOS), as well as adenosine triphosphate production. Metabolomic study and Ultra-high performance liquid chromatography-mass spectrometry assay revealed that CS significantly decreased the content of long-chain fatty acids (LCFAs) and markedly induced long-chain fatty acyl-CoA synthetase 1 (Acsl1), which in turn facilitated the catabolism of LCFAs in mitochondria via fatty acid ß-oxidation and OXPHOS. In a rat carotid artery injury model, transplantation of EPCs overexpressing Acsl1 enhanced the adhesion and re-endothelialization of EPCs in vivo. MRI and vascular morphology staining showed that Acsl1 overexpression in EPCs improved vascular repair and inhibited vascular stenosis. This study reveals a mechanotransduction mechanism by which physiological CS enhances endothelial repair via EPC patency.


Asunto(s)
Células Progenitoras Endoteliales , Ratas , Animales , Mecanotransducción Celular , Diferenciación Celular , Mitocondrias/metabolismo , Ácidos Grasos/metabolismo
2.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297486

RESUMEN

Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to collagen-activated platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism; they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Our carotid artery intimal injury model indicated that platelets adhered to injured blood vessels. In vitro, phosphorylated Pka (cAMP-dependent protein kinase) content was increased in aPMVs. We also found that aPMVs significantly reduced VSMC glycolysis and increased oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating phosphorylated PRKAA (α catalytic subunit of AMP-activated protein kinase) and phosphorylated FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the enhancement of cellular function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. We show that aPMVs can affect VSMC energy metabolism through the Pka-PRKAA-FoxO1 signaling pathway and this ultimately affects VSMC function, indicating that the shift in VSMC metabolic phenotype by aPMVs can be considered a potential target for the inhibition of hyperplasia. This provides a new perspective for regulating the abnormal activity of VSMCs after injury.


Asunto(s)
Traumatismos de las Arterias Carótidas , Músculo Liso Vascular , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Plaquetas/metabolismo , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Hiperplasia/complicaciones , Hiperplasia/metabolismo , Hiperplasia/patología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/complicaciones , Neointima/metabolismo , Neointima/patología
3.
J Transl Med ; 22(1): 564, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872164

RESUMEN

BACKGROUND/PURPOSE(S): The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS: We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS: Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION: Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.


Asunto(s)
Artritis Gotosa , Microbioma Gastrointestinal , Osteoartritis , Viroma , Humanos , Artritis Gotosa/virología , Artritis Gotosa/microbiología , Masculino , Osteoartritis/virología , Osteoartritis/microbiología , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Metagenómica , Heces/virología , Heces/microbiología
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001623

RESUMEN

Vascular endothelial cells (ECs) sense and respond to hemodynamic forces such as pulsatile shear stress (PS) and oscillatory shear stress (OS). Among the metabolic pathways, glycolysis is differentially regulated by atheroprone OS and atheroprotective PS. Studying the molecular mechanisms by which PS suppresses glycolytic flux at the epigenetic, transcriptomic, and kinomic levels, we have demonstrated that glucokinase regulatory protein (GCKR) was markedly induced by PS in vitro and in vivo, although PS down-regulates other glycolysis enzymes such as hexokinase (HK1). Using next-generation sequencing data, we identified the binding of PS-induced Krüppel-like factor 4 (KLF4), which functions as a pioneer transcription factor, binding to the GCKR promoter to change the chromatin structure for transactivation of GCKR. At the posttranslational level, PS-activated AMP-activated protein kinase (AMPK) phosphorylates GCKR at Ser-481, thereby enhancing the interaction between GCKR and HK1 in ECs. In vivo, the level of phosphorylated GCKR Ser-481 and the interaction between GCKR and HK1 were increased in the thoracic aorta of wild-type AMPKα2+/+ mice in comparison with littermates with EC ablation of AMPKα2 (AMPKα2-/-). In addition, the level of GCKR was elevated in the aortas of mice with a high level of voluntary wheel running. The underlying mechanisms for the PS induction of GCKR involve regulation at the epigenetic level by KLF4 and at the posttranslational level by AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Aorta Torácica/metabolismo , Epigénesis Genética , Glucólisis/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aorta Torácica/citología , Fenómenos Biomecánicos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Unión Proteica , Reología , Transcriptoma
5.
Phytother Res ; 38(5): 2154-2164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38391003

RESUMEN

Proanthocyanidins (PCs) are natural antioxidant polyphenols and their effect on the regulation of blood lipids is still controversial. This study was conducted to evaluate the effect of PCs on lipid metabolism. We searched PubMed, Embase, Web of Science, Chinese biomedical literature service system, China National Knowledge Internet, and Wanfang Data with no time restriction until March 18, 2022, using various forms of "proanthocyanidins" and "blood lipid" search terms. Randomized controlled trials investigating the relationship between PCs and lipid metabolism were included. The standard system of Cochrane Collaboration was used to assess the quality of studies. We standardized mean differences (SMDs) with 95% confidence interval (CI) using the random-effects model, Cohen approach. Seventeen studies (17 trials, N = 1138) fulfilled the eligibility criteria. PCs significantly reduced triglyceride, and increased recombinant apolipoprotein A1. Subgroup analysis showed a significant reduction in triglycerides in older adults (≥60 years) and total cholesterol for participants who were not overweight or obese (body mass index <24). An intervention duration of greater than 8 weeks reduced triglyceride and low-density lipoprotein cholesterol levels but increased high-density lipoprotein cholesterol. Different doses of PCs could regulate triglycerides, high-density lipoprotein cholesterol and total cholesterol. PCs have beneficial effects on circulating lipids and may represent a new approach for treating or preventing lipid metabolism disorders. However, more high-quality studies are needed to confirm these results.


Asunto(s)
Proantocianidinas , Triglicéridos , Proantocianidinas/farmacología , Humanos , Triglicéridos/sangre , Lípidos/sangre , Ensayos Clínicos Controlados Aleatorios como Asunto , Metabolismo de los Lípidos/efectos de los fármacos , LDL-Colesterol/sangre , HDL-Colesterol/sangre , Apolipoproteína A-I/sangre , Colesterol/sangre , Antioxidantes/farmacología
6.
BMC Microbiol ; 23(1): 363, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001408

RESUMEN

OBJECTIVE: The gut microbial composition has been linked to metabolic and autoimmune diseases, including arthritis. However, there is a dearth of knowledge on the gut bacteriome, mycobiome, and virome in patients with gouty arthritis (GA). METHODS: We conducted a comprehensive analysis of the multi-kingdom gut microbiome of 26 GA patients and 28 healthy controls, using whole-metagenome shotgun sequencing of their stool samples. RESULTS: Profound alterations were observed in the gut bacteriome, mycobiome, and virome of GA patients. We identified 1,117 differentially abundant bacterial species, 23 fungal species, and 4,115 viral operational taxonomic units (vOTUs). GA-enriched bacteria included Escherichia coli_D GENOME144544, Bifidobacterium infantis GENOME095938, Blautia_A wexlerae GENOME096067, and Klebsiella pneumoniae GENOME147598, while control-enriched bacteria comprised Faecalibacterium prausnitzii_G GENOME147678, Agathobacter rectalis GENOME143712, and Bacteroides_A plebeius_A GENOME239725. GA-enriched fungi included opportunistic pathogens like Cryptococcus neoformans GCA_011057565, Candida parapsilosis GCA_000182765, and Malassezia spp., while control-enriched fungi featured several Hortaea werneckii subclades and Aspergillus fumigatus GCA_000002655. GA-enriched vOTUs mainly attributed to Siphoviridae, Myoviridae, Podoviridae, and Microviridae, whereas control-enriched vOTUs spanned 13 families, including Siphoviridae, Myoviridae, Podoviridae, Quimbyviridae, Phycodnaviridae, and crAss-like. A co-abundance network revealed intricate interactions among these multi-kingdom signatures, signifying their collective influence on the disease. Furthermore, these microbial signatures demonstrated the potential to effectively discriminate between patients and controls, highlighting their diagnostic utility. CONCLUSIONS: This study yields crucial insights into the characteristics of the GA microbiota that may inform future mechanistic and therapeutic investigations.


Asunto(s)
Artritis Gotosa , Microbioma Gastrointestinal , Microbiota , Micobioma , Humanos , Pueblos del Este de Asia , Bacterias/genética
7.
Cardiovasc Diabetol ; 22(1): 237, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660030

RESUMEN

Diabetes mellitus is a metabolic disease characterized by long-term hyperglycaemia, which leads to microangiopathy and macroangiopathy and ultimately increases the mortality of diabetic patients. Endothelial dysfunction, which has been recognized as a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy, is characterized by a reduction in NO bioavailability. Oxidative stress, which is the main pathogenic factor in diabetes, is one of the major triggers of endothelial dysfunction through the reduction in NO. In this review, we summarize the four sources of ROS in the diabetic vasculature and the underlying molecular mechanisms by which the pathogenic factors hyperglycaemia, hyperlipidaemia, adipokines and insulin resistance induce oxidative stress in endothelial cells in the context of diabetes. In addition, we discuss oxidative stress-targeted interventions, including hypoglycaemic drugs, antioxidants and lifestyle interventions, and their effects on diabetes-induced endothelial dysfunction. In summary, our review provides comprehensive insight into the roles of oxidative stress in diabetes-induced endothelial dysfunction.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Enfermedades Vasculares , Humanos , Células Endoteliales , Diabetes Mellitus/diagnóstico , Estrés Oxidativo
8.
Cell Commun Signal ; 21(1): 365, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129863

RESUMEN

Hyperglycaemia-induced endothelial dysfunction is a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy. STING, which is a newly discovered regulator of innate immunity, has also been reported to play an important role in various metabolic diseases. However, the role of STING in diabetes-induced endothelial cell dysfunction is unknown. In this study, we established a diabetic macroangiopathy mouse model by streptozotocin (STZ) injection combined with high-fat diet (HFD) feeding and a glucotoxicity cell model in high glucose (HG)-treated rat aortic endothelial cells (RAECs). We found that STING expression was specifically increased in the endothelial cells of diabetic arteries, as well as in HG-treated RAECs. Moreover, genetic deletion of STING significantly ameliorated diabetes-induced endothelial cell dysfunction and apoptosis in vivo. Likewise, STING inhibition by C-176 reversed HG-induced migration dysfunction and apoptosis in RAECs, whereas STING activation by DMXAA resulted in migration dysfunction and apoptosis. Mechanistically, hyperglycaemia-induced oxidative stress promoted endothelial mitochondrial dysfunction and mtDNA release, which subsequently activated the cGAS-STING system and the cGAS-STING-dependent IRF3/NF-kB pathway, ultimately resulting in inflammation and apoptosis. In conclusion, our study identified a novel role of STING in diabetes-induced aortic endothelial cell injury and suggested that STING inhibition was a potential new therapeutic strategy for the treatment of diabetic macroangiopathy. Video Abstract.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Hiperglucemia , Ratones , Ratas , Animales , Células Endoteliales/metabolismo , Transducción de Señal , Hiperglucemia/complicaciones , Nucleotidiltransferasas/metabolismo , Complicaciones de la Diabetes/metabolismo
9.
Cell Biol Toxicol ; 39(1): 277-299, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35235096

RESUMEN

Diabetic cardiomyopathy (DCM) is characterized by lipid accumulation, mitochondrial dysfunction, and aseptic inflammatory activation. Mitochondria-derived cytosolic DNA has been reported to induce inflammation by activating cyclic GMP-AMP synthase (cGAS)/the stimulator of interferon genes (STING) pathway in the adipose, liver, and kidney tissues. However, the role of cytosolic mtDNA in the progression of DCM is unclear. In this study, with an obesity-related DCM mouse model established by feeding db/db mice with a high-fat diet (HFD), we observed increased mtDNA in the cytosol and activated cGAS-STING signaling pathway during DCM, as well as the downstream targets, IRF3, NF-κB, IL-18, and IL-1ß. In a further study with a palmitic acid (PA)-induced lipotoxic cell model established in H9C2 cells, we revealed that the cytosolic mtDNA was the result of PA-induced overproduction of mitochondrial ROS, which also led to the activation of the cGAS/STING system and its downstream targets. Notably, treatment of extracted mtDNA alone was sufficient to activate the cGAS-STING signaling pathway in cultured H9C2 cells. Besides, both knockdown of STING in PA-induced H9C2 cells and inhibition of STING by C-176 injection in the DCM mouse model could remarkably block the inflammation and apoptosis of cardiomyocytes. In conclusion, our study elucidated the critical role of cytosolic mtDNA-induced cGAS-STING activation in the pathogenesis of obesity-related DCM and provided preclinical validation for using a STING inhibitor as a new potential therapeutic strategy for the treatment of DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Animales , Ratones , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , ADN Mitocondrial/metabolismo , Inflamación/metabolismo , Mitocondrias/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo
10.
Cell Mol Life Sci ; 78(19-20): 6557-6583, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34459951

RESUMEN

G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.


Asunto(s)
ADN/genética , Animales , Replicación del ADN/genética , Diseño de Fármacos , Epigénesis Genética/genética , G-Cuádruplex , Humanos , Telómero/genética , Transcripción Genética/genética
11.
BMC Anesthesiol ; 22(1): 328, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284289

RESUMEN

BACKGROUND: To investigate the effect of different depth of anesthesia on inflammatory factors and hospital outcomes in elderly patients undergoing laparoscopic radical gastrectomy for gastric cancer, in order to select an appropriate depth of anesthesia to improve the prognosis of patients undergoing surgery and improve the quality of life of patients. METHODS: A total of 80 elderly patients aged 65 and above who underwent laparoscopic radical gastrectomy in our hospital were by convenience sampling and randomly divided into two groups : 55 groups ( group H ) and 45 groups ( group L ), 40 cases in each group. The depth of anesthesia was maintained using a closed-loop target-controlled infusion system: the EEG bispectral index was set to 55 in the H group and 45 in the L group. Venous blood samples were collected 2 h (T2), 24 h (T3) and 72 h (T4) after the start of surgery. The intraoperative dosage of propofol and remifentanil, operation duration, postoperative PACU stay time, intraoperative consciousness occurrence, postoperative hospital stay and postoperative pulmonary inflammatory events were recorded. RESULTS: The patient characteristic of the two groups had no statistical difference and were comparable (P > 0.05). The intraoperative dosage of propofol in group H was lower than that in group L (P < 0.05). Compared with the L group, the plasma IL-6 and IL-10 concentrations in the H group were significantly increased at T2 (P < 0.05), and the plasma IL-10 concentration was significantly increased at T4 (P < 0.05). The plasma concentrations of IL-6 and IL-10 were higher in both groups at T2, T3 and T4 than at T1, while at T4, the concentration of TNF-α in group H was higher than at T1 (P < 0.05). CONCLUSION: When the BIS value of the depth of anesthesia is 45, the perioperative release of inflammatory factors in elderly patients with laparoscopic radical gastrectomy for gastric cancer is less than BIS 55, and does not affect the prognosis.


Asunto(s)
Laparoscopía , Propofol , Neoplasias Gástricas , Anciano , Humanos , Anestesia General , Gastrectomía , Hospitales , Interleucina-10 , Interleucina-6 , Calidad de Vida , Remifentanilo , Neoplasias Gástricas/cirugía , Factor de Necrosis Tumoral alfa
12.
Mediators Inflamm ; 2022: 7236118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133744

RESUMEN

Infiltration and aggregation of lymphocytes in exocrine glands are the basic pathological manifestations of Sjögren's syndrome (SS), and the incidence of SS has been increasing year by year in recent years. To explore the potential signaling pathway of Runzaoling (RZL) in alleviating SS, the possible targets of RZL in SS were firstly explored through network pharmacology, and then, the regulation of PI3K/AKT/mTOR signaling in NOD mice and Th17 cells was verified. 75 8-week-old NOD mice were casually classified into 5 groups: model; hydroxychloroquine; high, medium, and low dose RZL groups, with 15 in each; and 15 BALB/c mice were employed as control group. After 10 weeks of continuous intragastric administration in mice and 24 hours of drugs intervention in Th17 cells, histopathology was observed by HE staining, and the gene transcription levels were identified by real-time quantitative PCR (RT-qPCR). The protein expressions were detected by western blotting (WB). The findings showed that high and medium dose RZL group could attenuate the submandibular gland tissue damage. The results indicated that the mRNA expressions of PI3K, AKT, mTOR, STAT3, and IL-17 in SS mice and in IL-17 stimulation of Th17 cells were dramatically increased compared with control group and decreased to varying degrees after RZL intervention. The trend of phosphorylated PI3K/AKT/mTOR and STAT3 and IL-17 protein expression in NOD mice and Th17 cells were consistent with mRNA. RZL can downregulate STAT3 and IL-17 expressions in the submandibular gland of NOD mice and in Th17 cells via regulating the PI3K/AKT/mTOR signaling pathway. Moreover, RZL could reduce the activation of CD4+ T lymphocyte differentiation to Th17 cells.


Asunto(s)
Síndrome de Sjögren , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hidroxicloroquina , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero , Transducción de Señal , Síndrome de Sjögren/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
13.
Phytother Res ; 36(11): 4051-4062, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36197117

RESUMEN

Evidence for the anti-diabetic actions of camellia and herbal tea in diabetic patients has not been summarized. Several data sources were searched for randomized trials assessing the effect of different teas on cardiometabolic risk factors in T2D subjects. Two independent reviewers extracted relevant data and assessed the risk of bias. Results were summarized using mean differences (MDs) based on a random model. Sixteen studies (19 trials, N = 832) fulfilled the eligibility criteria. Mean differences were measured for body weight, body mass index, fasting blood glucose, glycosylated hemoglobin, a homeostatic model for insulin resistance, high and low-density lipoproteins, triglycerides, and systolic and diastolic blood pressure. No effects on total cholesterol and waist circumference were observed when either camellia or herbal tea was consumed. Tea produced moderate regulatory effects on adipose, glycemic control, lipid profiles, and blood pressure. In terms of efficacy, camellia and herbal teas yield different benefits in regulating metabolism. This discovery has some implications for clinical research and drug development. However, more high-quality trials are needed to improve the certainty of our estimates.


Asunto(s)
Camellia , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Tés de Hierbas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Tés de Hierbas/análisis , Ensayos Clínicos Controlados Aleatorios como Asunto , , Enfermedades Cardiovasculares/prevención & control , Glucemia/análisis
14.
Molecules ; 27(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35566120

RESUMEN

Ambient ionization mass spectrometry (AIMS) is both labor and time saving and has been proven to be useful for the rapid delineation of trace organic and biological compounds with minimal sample pretreatment. Herein, an analytical platform of probe sampling combined with a thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) and multivariate statistical analysis was developed to rapidly differentiate bacterial species based on the differences in their lipid profiles. For comparison, protein fingerprinting was also performed with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) to distinguish these bacterial species. Ten bacterial species, including five Gram-negative and five Gram-positive bacteria, were cultured, and the lipids in the colonies were characterized with TD-ESI/MS. As sample pretreatment was unnecessary, the analysis of the lipids in a bacterial colony growing on a Petri dish was completed within 1 min. The TD-ESI/MS results were further performed by principal component analysis (PCA) and hierarchical cluster analysis (HCA) to assist the classification of the bacteria, and a low relative standard deviation (5.2%) of the total ion current was obtained from repeated analyses of the lipids in a single bacterial colony. The PCA and HCA results indicated that different bacterial species were successfully distinguished by the differences in their lipid profiles as validated by the differences in their protein profiles recorded from the MALDI-TOF analysis. In addition, real-time monitoring of the changes in the specific lipids of a colony with growth time was also achieved with probe sampling and TD-ESI/MS. The developed analytical platform is promising as a useful diagnostic tool by which to rapidly distinguish bacterial species in clinical practice.


Asunto(s)
Bacterias , Espectrometría de Masa por Ionización de Electrospray , Lípidos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
15.
FASEB J ; 34(10): 13586-13596, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32856783

RESUMEN

Endothelial microparticles (EMPs) are involved in various cardiovascular pathologies and play remarkable roles in communication between endothelial cells (ECs), which are constantly exposed to mechanical cyclic stretch (CS) following blood pressure. However, the roles of EMPs induced by CS in EC homeostasis are still unclear. Both fluorescence resonance energy transfer (FRET) and western blotting revealed the activation of Src in ECs was significantly increased by 5% CS-induced EMPs. Furthermore, proteomic analysis revealed that the contents were obvious different in the EMPs between 5%- and 15%-group. Based on the bioinformatic analysis, CD151 on EMPs was predicted to activate Src, which was further confirmed by both FRET and western blotting. Moreover, the expression of CD151 on EMPs was significantly increased by 5% CS and involved in the binding of EMPs to ECs. EC apoptosis, which was significantly decreased by 5% CS-derived EMPs, showed obvious increase after pretreatment with Src inhibitor in target ECs. Our present research suggests that mechanical stretch changes the components of EMPs, which in turn modulates EC apoptosis by Src activation. CD151 expressed on CS-induced EMPs may play important roles in EC communication and homeostasis.


Asunto(s)
Apoptosis , Micropartículas Derivadas de Células/fisiología , Células Endoteliales , Endotelio Vascular , Familia-src Quinasas/metabolismo , Animales , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Ratas , Estrés Mecánico , Tetraspanina 24/metabolismo
16.
Exp Cell Res ; 386(1): 111710, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693873

RESUMEN

Physiological cyclic stretch (CS), caused by artery deformation following blood pressure, plays important roles in the homeostasis of endothelial cells (ECs). Here, we detected the effect of physiological CS on endothelial microvesicles (EMVs) and their roles in leukocyte recruitment to ECs, which is a crucial event in EC inflammation. The results showed compared with the static treatment, pretreatment of 5%-CS-derived EMVs with ECs significantly decreased the adherence level of leukocytes. Comparative proteomic analysis revealed 373 proteins differentially expressed between static-derived and 5%-CS-derived EMVs, in which 314 proteins were uniquely identified in static-derived EMVs, 34 proteins uniquely in 5%-CS-derived EMVs, and 25 proteins showed obvious differences. Based on the proteomic data, Ingenuity Pathways Analysis predicted intercellular adhesion molecule 1 (ICAM1) in EMVs might be the potential molecule involved in EC-leukocyte adhesion. Western blot and flow cytometry analyses confirmed the significant decrease of ICAM1 in 5%-CS-derived EMVs, which subsequently inhibited the phosphorylation of VE-cadherin at Tyr731 in target ECs. Moreover, leukocyte adhesion was obviously decreased after pretreatment with ICAM1 neutralizing antibody. Our present research suggested that physiological stretch changes the components of EMVs, which in turn inhibits leukocyte adhesion. ICAM1 expressed on CS-induced EMVs may play an important role in maintaining EC homeostasis.


Asunto(s)
Adhesión Celular , Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/fisiología , Animales , Cadherinas/metabolismo , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/fisiología , Endotelio Vascular/citología , Leucocitos/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Estrés Mecánico
17.
Acta Pharmacol Sin ; 42(4): 633-640, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32737469

RESUMEN

Inhibition of glycolysis process has been an attractive approach for cancer treatment due to the evidence that tumor cells are more dependent on glycolysis rather than oxidative phosphorylation pathway. Preliminary evidence shows that inhibition of phosphoglycerate kinase 1 (PGK1) kinase activity would reverse the Warburg effect and make tumor cells lose the metabolic advantage for fueling the proliferation through restoration of the pyruvate dehydrogenase (PDH) activity and subsequently promotion of pyruvic acid to enter the Krebs cycle in glioma. However, due to the lack of small molecule inhibitors of PGK1 kinase activity to treat glioma, whether PGK1 could be a therapeutic target of glioma has not been pharmacologically verified yet. In this study we developed a high-throughput screening and discovered that NG52, previously known as a yeast cell cycle-regulating kinase inhibitor, could inhibit the kinase activity of PGK1 (the IC50 = 2.5 ± 0.2 µM). We showed that NG52 dose-dependently inhibited the proliferation of glioma U87 and U251 cell lines with IC50 values of 7.8 ± 1.1 and 5.2 ± 0.2 µM, respectively, meanwhile it potently inhibited the proliferation of primary glioma cells. We further revealed that NG52 (12.5-50 µM) effectively inhibited the phosphorylation of PDHK1 at Thr338 site and the phosphorylation of PDH at Ser293 site in U87 and U251 cells, resulting in more pyruvic acid entering the Krebs cycle with increased production of ATP and ROS. Therefore, NG52 could reverse the Warburg effect by inhibiting PGK1 kinase activity, and switched cellular glucose metabolism from anaerobic mode to aerobic mode. In nude mice bearing patient-derived glioma xenograft, oral administration of NG52 (50, 100, 150 mg· kg-1·d-1, for 13 days) dose-dependently suppressed the growth of glioma xenograft. Together, our results demonstrate that targeting PGK1 kinase activity might be a potential strategy for glioma treatment.


Asunto(s)
Adenina/análogos & derivados , Adenina/uso terapéutico , Glioma/tratamiento farmacológico , Fosfoglicerato Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenina/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Glioma/enzimología , Humanos , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Efecto Warburg en Oncología/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Acta Pharmacol Sin ; 42(1): 108-114, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32398685

RESUMEN

Glioblastoma (GBM) patients have extremely poor prognoses, and currently no effective treatment available including surgery, radiation, and chemotherapy. MAPK-interacting kinases (MNK1/2) as the downstream of the MAPK-signaling pathway regulate protein synthesis in normal and tumor cells. Research has shown that targeting MNKs may be an effective strategy to treat GBM. In this study we investigated the antitumor activity of osimertinib, an FDA-approved epidermal growth factor receptor (EGFR) inhibitor, against patient-derived primary GBM cells. Using high-throughput screening approach, we screened the entire panel of FDA-approved drugs against primary cancer cells derived from glioblastoma patients, found that osimertinib (3 µM) suppressed the proliferation of a subset (10/22) of EGFR-negative GBM cells (>50% growth inhibition). We detected the gene expression difference between osimertinib-sensitive and -resistant cells, found that osimertinib-sensitive GBM cells displayed activated MAPK-signaling pathway. We further showed that osimertinib potently inhibited the MNK kinase activities with IC50 values of 324 nM and 48.6 nM, respectively, against MNK1 and MNK2 kinases; osimertinib (0.3-3 µM) dose-dependently suppressed the phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). In GBM patient-derived xenografts mice, oral administration of osimertinib (40 mg· kg-1 ·d-1, for 18 days) significantly suppressed the tumor growth (TGI = 74.5%) and inhibited eIF4E phosphorylation in tumor cells. Given the fact that osimertinib could cross the blood-brain barrier and its toxicity was well tolerated in patients, our results suggest that osimertinib could be a new and effective drug candidate for the EGFR-negative GBM patients.


Asunto(s)
Acrilamidas/uso terapéutico , Compuestos de Anilina/uso terapéutico , Antineoplásicos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Adolescente , Adulto , Anciano , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Niño , Receptores ErbB/deficiencia , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Ratones , Persona de Mediana Edad , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
19.
J Cell Physiol ; 235(10): 6831-6842, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31990052

RESUMEN

Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are the pathological basis of hyperplasia during vein graft disease. It remains unknown if circular RNAs (circRNAs) are involved in vein graft disease. In the present study, a rat vein graft model was constructed by the "cuff" technique, and whole transcriptome deep sequencing was applied to identify differential circRNAs in the grafted vein compared to the control. We identified a novel circRNA, named circTET3, whose structure was verified by Sanger sequencing and RNase R digestion. CircTET3 was increased in the grafted vein and stably located in the cytoplasm as detected by fluorescence in situ hybridization. Knockdown of circTET3 suppressed VSMC migration by acting as an endogenous miR-351-5p sponge detected by RNA pull-down and dual-luciferase reporter assays. PTPN1 was the targeted gene due to the competitive binding of circTET3 to miR-351-5p. This regulatory pathway may serve as a potential therapeutic avenue against intimal hyperplasia in vein graft disease.


Asunto(s)
Movimiento Celular/genética , MicroARNs/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , ARN Circular/genética , Animales , Células Cultivadas , Citoplasma/genética , Modelos Animales de Enfermedad , Hiperplasia/genética , Hiperplasia/patología , Masculino , Disfunción Primaria del Injerto/genética , Disfunción Primaria del Injerto/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Ratas , Ratas Sprague-Dawley , Transcriptoma/genética
20.
FASEB J ; 33(3): 3784-3794, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30496701

RESUMEN

Dendritic cells (DCs) have crucial roles in immune-related diseases. However, it is difficult to explore DCs because of their rareness and heterogeneity. Although previous studies had been performed to detect the phenotypic characteristics of DC populations, the functional diversity has been ignored. Using a combination of flow cytometry, single-cell quantitative PCR, and bioinformatic analysis, we depicted the DC panorama with not only phenotypic but also functional markers. Functional classification of DCs in mouse lymphoid tissue (spleen) and nonlymphoid tissue (liver) was performed. The results revealed that expression of macrophage scavenger receptor 1 ( MSR1) and C-C motif chemokine receptors ( CCR) 1, CCR2, and CCR4 were elevated in liver DCs, suggesting increased lipid uptake and migration abilities. The enriched expression of costimulatory molecule CD80, TLR9, and TLR adaptor MYD88 in spleen DCs indicated a more-mature phenotype, enhanced pathogen recognition, and T-cell stimulation abilities. Furthermore, we compared DCs in the atherosclerotic mouse models with healthy controls. In addition to the quantitative increase in DCs in the liver and spleen of the apolipoprotein E-knockout ( ApoE-/-) mice, the functional expression patterns of the DCs also changed at the single-cell level. These results promote our understanding of the participation of DCs in inflammatory diseases and have potential applications in DC clinical assessment.-Shi, Q., Zhuang, F., Liu, J.-T., Li, N., Chen, Y.-X., Su, X.-B., Yao, A.-H., Yao, Q.-P., Han, Y., Li, S.-S., Qi, Y.-X., Jiang, Z.-L. Single-cell analyses reveal functional classification of dendritic cells and their potential roles in inflammatory disease.


Asunto(s)
Células Dendríticas/patología , Inflamación/patología , Animales , Células Dendríticas/metabolismo , Citometría de Flujo/métodos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores CCR1/metabolismo , Receptores Depuradores de Clase A/metabolismo , Análisis de la Célula Individual/métodos , Bazo/patología , Linfocitos T/metabolismo , Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda