Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 145(49): 26632-26644, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38047734

RESUMEN

The water oxidation reaction, the most important reaction for hydrogen production and other sustainable chemistry, is efficiently catalyzed by the Mn4CaO5 cluster in biological photosystem II. However, synthetic Mn-based heterogeneous electrocatalysts exhibit inferior catalytic activity at neutral pH under mild conditions. Symmetry-broken Mn atoms and their cooperative mechanism through efficient oxidative charge accumulation in biological clusters are important lessons but synthesis strategies for heterogeneous electrocatalysts have not been successfully developed. Here, we report a crystallographically distorted Mn-oxide nanocatalyst, in which Ir atoms break the space group symmetry from I41/amd to P1. Tetrahedral Mn(II) in spinel is partially replaced by Ir, surprisingly resulting in an unprecedented crystal structure. We analyzed the distorted crystal structure of manganese oxide using TEM and investigated how the charge accumulation of Mn atoms is facilitated by the presence of a small amount of Ir.

2.
J Am Chem Soc ; 144(38): 17416-17422, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36098659

RESUMEN

Selective and efficient electrocatalysts are imperative for the successful deployment of electrochemistry toward synthetic applications. In this study, we used galvanic replacement reactions to synthesize iridium-decorated manganese oxide nanoparticles, which showed a cyclooctene epoxidation partial current density of 10.5 ± 2.8 mA/cm2 and a Faradaic efficiency of 46 ± 4%. Results from operando X-ray absorption spectroscopy suggest that manganese leaching from the nanoparticles during galvanic replacement introduces lattice vacancies that make the nanoparticles more susceptible to metal oxidation and catalyst reconstruction under an applied anodic potential. This results in an increased presence of electrophilic oxygen atoms on the catalyst surface during reaction conditions, which may contribute to the enhanced electrocatalytic activity toward cyclooctene epoxidation.

3.
Phys Chem Chem Phys ; 23(2): 859-865, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33074274

RESUMEN

We investigated the effects of paramagnetic (PM) fluctuations on the thermochemistry of the MnO(100) surface in the oxygen evolution reaction (OER) using the "noncollinear magnetic sampling method plus U" (NCMSM+U). Various physical properties, such as the electronic structure, free energy, and charge occupation, of the MnO(100) surface in the PM state with several OER intermediates, were reckoned and compared to those in the antiferromagnetic (AFM) state. We found that PM fluctuation enhances charge transfer from a surface Mn ion to each of the intermediates and strengthens the chemical bond between them, while not altering the overall features, such as the rate determining step and resting state, in reaction pathways. The enhanced charge transfer can be attributed to the delocalized nature of valence bands observed in the PM surface. In addition, it was observed that chemical-bond enhancement depends on the intermediates, resulting in significant deviations in reaction energy barriers. Our study suggests that PM fluctuations play a significant role in the thermochemistry of chemical reactions occurring on correlated oxide surfaces.

4.
Angew Chem Int Ed Engl ; 60(37): 20325-20330, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34265141

RESUMEN

Despite the critical role played by carbon monoxide (CO) in physiological and pathological signaling events, current approaches to deliver this messenger molecule are often accompanied by off-target effects and offer limited control over release kinetics. To address these challenges, we develop an electrochemical approach that affords on-demand release of CO through reduction of carbon dioxide (CO2 ) dissolved in the extracellular space. Electrocatalytic generation of CO by cobalt phthalocyanine molecular catalysts modulates signaling pathways mediated by a CO receptor soluble guanylyl cyclase. Furthermore, by tuning the applied voltage during electrocatalysis, we explore the effect of the CO release kinetics on CO-dependent neuronal signaling. Finally, we integrate components of our electrochemical platform into microscale fibers to produce CO in a spatially-restricted manner and to activate signaling cascades in the targeted cells. By offering on-demand local synthesis of CO, our approach may facilitate the studies of physiological processes affected by this gaseous molecular messenger.


Asunto(s)
Monóxido de Carbono/metabolismo , Técnicas Electroquímicas , Transducción de Señal , Monóxido de Carbono/química , Células HEK293 , Humanos
5.
Inorg Chem ; 59(13): 8846-8854, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32501692

RESUMEN

Identification of the surface structure of nanoparticles is important for understanding the catalytic mechanism and improving the properties of the particles. Here, we provide a detailed description of the coordination modes of ethylenediaminetetraacetate (EDTA) on Mn3O4 nanoparticles at the atomic level, as obtained by advanced electron paramagnetic resonance (EPR) spectroscopy. Binding of EDTA to Mn3O4 leads to dramatic changes in the EPR spectrum, with a 5-fold increase in the axial zero-field splitting parameter of Mn(II). This indicates significant changes in the coordination environment of the Mn(II) site; hence, the binding of EDTA causes a profound change in the electronic structure of the manganese site. Furthermore, the electron spin echo envelope modulation results reveal that two 14N atoms of EDTA are directly coordinated to the Mn site and a water molecule is coordinated to the surface of the nanoparticles. An Fourier transform infrared spectroscopy study shows that the Ca(II) ion is coordinated to the carboxylic ligands via the pseudobridging mode. The EPR spectroscopic results provide an atomic picture of surface-modified Mn3O4 nanoparticles for the first time. These results can enhance our understanding of the rational design of catalysts, for example, for the water oxidation reaction.

6.
J Am Chem Soc ; 141(15): 6413-6418, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30963761

RESUMEN

Epoxides are useful intermediates for the manufacture of a diverse set of chemical products. Current routes of olefin epoxidation either involve hazardous reagents or generate stoichiometric side products, leading to challenges in separation and significant waste streams. Here, we demonstrate a sustainable and safe route to epoxidize olefin substrates using water as the oxygen atom source at room temperature and ambient pressure. Manganese oxide nanoparticles (NPs) are shown to catalyze cyclooctene epoxidation with Faradaic efficiencies above 30%. Isotopic studies and detailed product analysis reveal an overall reaction in which water and cyclooctene are converted to cyclooctene oxide and hydrogen. Electrokinetic studies provide insights into the mechanism of olefin epoxidation, including an approximate first-order dependence on the substrate and water and a rate-determining step which involves the first electron transfer. We demonstrate that this new route can also achieve a cyclooctene conversion of ∼50% over 4 h.

7.
J Am Chem Soc ; 139(6): 2277-2285, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28029792

RESUMEN

The development of active water oxidation catalysts is critical to achieve high efficiency in overall water splitting. Recently, sub-10 nm-sized monodispersed partially oxidized manganese oxide nanoparticles were shown to exhibit not only superior catalytic performance for oxygen evolution, but also unique electrokinetics, as compared to their bulk counterparts. In the present work, the water-oxidizing mechanism of partially oxidized MnO nanoparticles was investigated using integrated in situ spectroscopic and electrokinetic analyses. We successfully demonstrated that, in contrast to previously reported manganese (Mn)-based catalysts, Mn(III) species are stably generated on the surface of MnO nanoparticles via a proton-coupled electron transfer pathway. Furthermore, we confirmed as to MnO nanoparticles that the one-electron oxidation step from Mn(II) to Mn(III) is no longer the rate-determining step for water oxidation and that Mn(IV)═O species are generated as reaction intermediates during catalysis.

8.
Small ; 13(17)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28218825

RESUMEN

There is an urgent need to develop metal-free, low cost, durable, and highly efficient catalysts for industrially important oxygen evolution reactions. Inspired by natural geodes, unique melamine nanogeodes are successfully synthesized using hydrothermal process. Sulfur-modified graphitic carbon nitride (S-modified g-CN x ) electrocatalysts are obtained by annealing these melamine nanogeodes in situ with sulfur. The sulfur modification in the g-CN x structure leads to excellent oxygen evolution reaction activity by lowering the overpotential. Compared with the previously reported nonmetallic systems and well-established metallic catalysts, the S-modified g-CN x nanostructures show superior performance, requiring a lower overpotential (290 mV) to achieve a current density of 10 mA cm-2 and a Tafel slope of 120 mV dec-1 with long-term durability of 91.2% retention for 18 h. These inexpensive, environmentally friendly, and easy-to-synthesize catalysts with extraordinary performance will have a high impact in the field of oxygen evolution reaction electrocatalysis.

9.
J Am Chem Soc ; 136(11): 4201-11, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24571280

RESUMEN

The development of a water oxidation catalyst has been a demanding challenge for the realization of overall water-splitting systems. Although intensive studies have explored the role of Mn element in water oxidation catalysis, it has been difficult to understand whether the catalytic capability originates mainly from either the Mn arrangement or the Mn valency. In this study, to decouple these two factors and to investigate the role of Mn valency on catalysis, we selected a new pyrophosphate-based Mn compound (Li2MnP2O7), which has not been utilized for water oxidation catalysis to date, as a model system. Due to the monophasic behavior of Li2MnP2O7 with delithiation, the Mn valency of Li(2-x)MnP2O7 (x = 0.3, 0.5, 1) can be controlled with negligible change in the crystal framework (e.g., volume change ~1%). Moreover, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, ex-situ X-ray absorption near-edge structure, galvanostatic charging-discharging, and cyclic voltammetry analysis indicate that Li(2-x)MnP2O7 (x = 0.3, 0.5, 1) exhibits high catalytic stability without additional delithiation or phase transformation. Notably, we observed that, as the averaged oxidation state of Mn in Li(2-x)MnP2O7 increases from 2 to 3, the catalytic performance is enhanced in the series Li2MnP2O7 < Li(1.7)MnP2O7 < Li(1.5)MnP2O7 < LiMnP2O7. Moreover, Li2MnP2O7 itself exhibits superior catalytic performance compared with MnO or MnO2. Our study provides valuable guidelines for developing an efficient Mn-based catalyst under neutral conditions with controlled Mn valency and atomic arrangement.

10.
J Am Chem Soc ; 136(20): 7435-43, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24758237

RESUMEN

The development of a water oxidation catalyst has been a demanding challenge in realizing water splitting systems. The asymmetric geometry and flexible ligation of the biological Mn4CaO5 cluster are important properties for the function of photosystem II, and these properties can be applied to the design of new inorganic water oxidation catalysts. We identified a new crystal structure, Mn3(PO4)2·3H2O, that precipitates spontaneously in aqueous solution at room temperature and demonstrated its high catalytic performance under neutral conditions. The bulky phosphate polyhedron induces a less-ordered Mn geometry in Mn3(PO4)2·3H2O. Computational analysis indicated that the structural flexibility in Mn3(PO4)2·3H2O could stabilize the Jahn-Teller-distorted Mn(III) and thus facilitate Mn(II) oxidation. This study provides valuable insights into the interplay between atomic structure and catalytic activity.

11.
Phys Rev Lett ; 113(11): 113901, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25259979

RESUMEN

Light-matter interaction gives optical microscopes tremendous versatility compared with other imaging methods such as electron microscopes, scanning probe microscopes, or x-ray scattering where there are various limitations on sample preparation and where the methods are inapplicable to bioimaging with live cells. However, this comes at the expense of a limited resolution due to the diffraction limit. Here, we demonstrate a novel method utilizing elastic scattering from disordered nanoparticles to achieve subdiffraction limited imaging. The measured far-field speckle fields can be used to reconstruct the subwavelength details of the target by time reversal, which allows full-field dynamic super-resolution imaging. The fabrication of the scattering superlens is extremely simple and the method has no restrictions on the wavelength of light that is used.

12.
J Colloid Interface Sci ; 663: 566-576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428114

RESUMEN

Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.

13.
Adv Sci (Weinh) ; 10(23): e2300951, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37289104

RESUMEN

Ammonia, a key feedstock used in various industries, has been considered a sustainable fuel and energy storage option. However, NH3 production via the conventional Haber-Bosch process is costly, energy-intensive, and significantly contributing to a massive carbon footprint. An electrochemical synthetic pathway for nitrogen fixation has recently gained considerable attention as NH3 can be produced through a green process without generating harmful pollutants. This review discusses the recent progress and challenges associated with the two relevant electrochemical pathways: direct and indirect nitrogen reduction reactions. The detailed mechanisms of these reactions and highlight the recent efforts to improve the catalytic performances are discussed. Finally, various promising research strategies and remaining tasks are presented to highlight future opportunities in the electrochemical nitrogen reduction reaction.

14.
Chem Commun (Camb) ; 59(32): 4818-4821, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37009682

RESUMEN

Reductive amination has been widely used for manufacturing carbon-nitrogen-containing building blocks. Despite its versatility, the need for a chemical reductant or harmful hydrogen gas has limited its further utilization in modern chemical applications. Here, we report electrochemical reductive amination (ERA) to pursue sustainable synthetic routes. Faradaic efficiencies of about 83% are achieved using Cu metal electrodes. In-depth electrokinetic studies reveal the rate-determining step and overall reaction nature of ERA. Through the experiments using deuterated solvent and additional proton sources, we scrutinize the origin of protons during the ERA. Furthermore, CW-EPR analysis captures the radical intermediate species, formed during the catalytic cycle, advancing mechanistic understanding of ERA process.

15.
J Phys Chem Lett ; 13(35): 8336-8343, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36040956

RESUMEN

Understanding the chemical states of individual surface atoms and their arrangements is essential for addressing several current issues such as catalysis, energy stroage/conversion, and environmental protection. Here, we exploit a profile imaging technique to understand the correlation between surface atomic structures and the oxygen evolution reaction (OER) in Mn3O4 nanoparticles. We image surface structures of Mn3O4 nanoparticles and observe surface reconstructions in the (110) and (101) planes. Mn3+ ions at the surface, which are commonly considered as the active sites in OER, disappear from the reconstructed planes, whereas Mn3+ ions are still exposed at the edges of nanoparticles. Our observations suggest that surface reconstructions can deactivate low-index surfaces of Mn oxides in OER. These structural and chemical observations are further validated by density functional theory calculations. This work shows why atomic-scale characterization of surface structures is crucial for a molecular-level understanding of a chemical reaction in oxide nanoparticles.

16.
Chem Sci ; 12(26): 8967-8995, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34276926

RESUMEN

This review presents the recent progress of oxygen functionalization reactions based on non-electrochemical (conventional organic synthesis) and electrochemical methods. Although both methods have their advantages and limitations, the former approach has been used to synthesize a broader range of organic substances as the latter is limited by several factors, such as poor selectivity and high energy cost. However, because electrochemical methods can replace harmful terminal oxidizers with external voltage, organic electrosynthesis has emerged as greener and more eco-friendly compared to conventional organic synthesis. The progress of electrochemical methods toward oxygen functionalization is presented by an in-depth discussion of different types of electrically driven-chemical organic synthesis, with particular attention to recently developed electrochemical systems and catalyst designs. We hope to direct the attention of readers to the latest breakthroughs of traditional oxygen functionalization reactions and to the potential of electrochemistry for the transformation of organic substrates to useful end products.

17.
Nat Nanotechnol ; 15(8): 690-697, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32601446

RESUMEN

Understanding the function of nitric oxide, a lipophilic messenger in physiological processes across nervous, cardiovascular and immune systems, is currently impeded by the dearth of tools to deliver this gaseous molecule in situ to specific cells. To address this need, we have developed iron sulfide nanoclusters that catalyse nitric oxide generation from benign sodium nitrite in the presence of modest electric fields. Locally generated nitric oxide activates the nitric oxide-sensitive cation channel, transient receptor potential vanilloid family member 1 (TRPV1), and the latency of TRPV1-mediated Ca2+ responses can be controlled by varying the applied voltage. Integrating these electrocatalytic nanoclusters with multimaterial fibres allows nitric oxide-mediated neuronal interrogation in vivo. The in situ generation of nitric oxide in the ventral tegmental area with the electrocatalytic fibres evoked neuronal excitation in the targeted brain region and its excitatory projections. This nitric oxide generation platform may advance mechanistic studies of the role of nitric oxide in the nervous system and other organs.


Asunto(s)
Técnicas Electroquímicas/métodos , Fenómenos Electrofisiológicos/fisiología , Neuronas , Óxido Nítrico , Animales , Encéfalo/citología , Encéfalo/fisiología , Calcio/metabolismo , Células HEK293 , Humanos , Masculino , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Canales Catiónicos TRPV/metabolismo
18.
Nat Commun ; 11(1): 5230, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067446

RESUMEN

High-valent metal-oxo moieties have been implicated as key intermediates preceding various oxidation processes. The critical O-O bond formation step in the Kok cycle that is presumed to generate molecular oxygen occurs through the high-valent Mn-oxo species of the water oxidation complex, i.e., the Mn4Ca cluster in photosystem II. Here, we report the spectroscopic characterization of new intermediates during the water oxidation reaction of manganese-based heterogeneous catalysts and assign them as low-spin Mn(IV)-oxo species. Recently, the effects of the spin state in transition metal catalysts on catalytic reactivity have been intensely studied; however, no detailed characterization of a low-spin Mn(IV)-oxo intermediate species currently exists. We demonstrate that a low-spin configuration of Mn(IV), S = 1/2, is stably present in a heterogeneous electrocatalyst of Ni-doped monodisperse 10-nm Mn3O4 nanoparticles via oxo-ligand field engineering. An unprecedented signal (g = 1.83) is found to evolve in the electron paramagnetic resonance spectrum during the stepwise transition from the Jahn-Teller-distorted Mn(III). In-situ Raman analysis directly provides the evidence for Mn(IV)-oxo species as the active intermediate species. Computational analysis confirmed that the substituted nickel species induces the formation of a z-axis-compressed octahedral C4v crystal field that stabilizes the low-spin Mn(IV)-oxo intermediates.

19.
J Phys Chem Lett ; 10(6): 1226-1233, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30816050

RESUMEN

The reaction mechanism of electrochemical chloride oxidation at neutral pH is different from that at acidic pH, in which a commercial chlor-alkali process has been developed. Different proton concentrations and accelerated hydrolysis of the generated chlorine into hypochlorous acid at high pH can change the electrokinetics and stability of reaction intermediates. We have investigated a unique reaction mechanism of Co3O4 nanoparticles for chloride oxidation at neutral pH. In contrast with water oxidation, the valency of cobalt was not changed during chloride oxidation. Interestingly, a new intermediate of Co-Cl was captured spectroscopically, distinct from the reaction intermediate at acidic pH. In addition, Co3O4 nanoparticles exhibited high selectivity for active chlorine generation at neutral pH, comparable to commercially available RuO2-based catalysts. We believe that this study provides insight into designing efficient electrocatalysts for active chlorine generation at neutral pH, which can be practically applied to electrochemical water treatment coupled to hydrogen production.

20.
ACS Cent Sci ; 4(9): 1253-1260, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30276260

RESUMEN

One of the remaining challenges in material chemistry is to unveil the quantitative compositional/structural information and thermodynamic nature of inorganic materials especially in the initial nucleation and growth step. In this report, we adopted newly developed time-of-flight medium-energy-ion-scattering (TOF-MEIS) spectroscopy to address this challenge and explored heterogeneously grown nanometer-sized calcium phosphate as a model system. With TOF-MEIS, we discovered the existence of calcium-rich nanoclusters (Ca/P ∼ 3) in the presence of the non-collagenous-protein-mimicking passivating ligands. Over the reaction, these clusters progressively changed their compositional ratio toward that of a bulk phase (Ca/P ∼ 1.67) with a concurrent increase in their size to ∼2 nm. First-principles studies suggested that the calcium-rich nanoclusters can be stabilized through specific interactions between the ligands and clusters, emphasizing the important role of template on guiding the chemical and thermodynamic nature of inorganic materials at the nanoscale.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda