RESUMEN
Secondary organic aerosol (SOA) formation from gasoline vehicles spanning a wide range of emission types was investigated using an oxidation flow reactor (OFR) by conducting chassis dynamometer tests. Aided by advanced mass spectrometric techniques, SOA precursors, including volatile organic compounds (VOCs) and intermediate/semivolatile organic compounds (I/SVOCs), were comprehensively characterized. The reconstructed SOA produced from the speciated VOCs and I/SVOCs can explain 69% of the SOA measured downstream of an OFR upon 0.5-3 days' OH exposure. While VOCs can only explain 10% of total SOA production, the contribution from I/SVOCs is 59%, with oxygenated I/SVOCs (O-I/SVOCs) taking up 20% of that contribution. O-I/SVOCs (e.g., benzylic or aliphatic aldehydes and ketones), as an obscured source, account for 16% of total nonmethane organic gas (NMOG) emission. More importantly, with the improvement in emission standards, the NMOG is effectively mitigated by 35% from China 4 to China 6, which is predominantly attributed to the decrease of VOCs. Real-time measurements of different NMOG components as well as SOA production further reveal that the current emission control measures, such as advances in engine and three-way catalytic converter (TWC) techniques, are effective in reducing the "light" SOA precursors (i.e., single-ring aromatics) but not for the I/SVOC emissions. Our results also highlight greater effects of O-I/SVOCs to SOA formation than previously observed and the urgent need for further investigation into their origins, i.e., incomplete combustion, lubricating oil, etc., which requires improvements in real-time molecular-level characterization of I/SVOC molecules and in turn will benefit the future design of control measures.
Asunto(s)
Aerosoles , Gasolina , Emisiones de Vehículos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/química , Compuestos Orgánicos/químicaRESUMEN
We analyzed two data sets of atmospheric formaldehyde (FA) at an urban site in the Shanghai megacity during the summer of 2017 and the winter of 2017/18, with the primary objective of determining the emission ratio of formaldehyde versus carbon monoxide (CO). Through the photochemical age method and the minimum R squared (MRS) method, we derived the summer urban formaldehyde release ratios of 3.37 ppbv (ppmv of CO)-1 and 4.04 ppbv (ppmv of CO)-1, respectively. The error of both estimations is within ±20%, indicating the consistency of the results. We recognized the hourly minimum emission ratios determined from the MRS method to be indicative of actual formaldehyde emission ratios. Similarly, the emission ratio in winter is determined to be 2.10 ppbv (ppmv of CO)-1 utilizing the MRS method. The findings provide significant insights into the potential impact of motor vehicle exhaust on formaldehyde emissions in urban areas. This work demonstrates that the formaldehyde emission ratio determined by the MRS method can be used to represent the emissions of the freshest air mass. Formaldehyde photolysis contributed an average of 9% to the free radical primary reaction rate (P(ROx)) as a single chemical species during the daytime in summer, which was lower than the 11% recorded in winter. Formaldehyde emission reduction positively impacts local ozone production, so models describing ozone formation in Shanghai during summer need to reflect these emissions accurately. Evidence of the crucial catalytic role of formaldehyde in particulate matter formation has been confirmed by recent research. A potentially effective way to decrease the incidence of haze days in autumn and winter in the future is therefore to focus on reducing formaldehyde emissions.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , China , Emisiones de Vehículos/análisis , Formaldehído/análisis , Ozono/análisisRESUMEN
Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (â¼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , China , Ozono/análisis , Monitoreo del Ambiente , Nitrógeno/análisisRESUMEN
Monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) are both well known as hazardous air pollutants and also important anthropogenic precursors of tropospheric ozone (O3) and secondary organic aerosols (SOA). In recent years, there have been intensive studies covering MAHs emission from various sources and their behavior under stimulated photochemical conditions. Yet in-situ measurements of PAHs presence and variations in ambient air are sparse. Herein we conducted large geometrical scale mobile measurements for 16 aromatic hydrocarbons (AHs, including 7 MAHs and 9 PAHs) in eastern China between October 27 and November 8, 2019. This unique dataset has allowed for some insights in terms of AHs concentration variations, accompanying chemical composition, source contributions and spatial distributions in eastern China. In general, AHs showed a clear concentration variability between the south and the north of the Yangtze River Delta (YRD). The concentrations of PAHs were approximately 9% of AHs, but contributed 23% of SOA formation potential. Source apportionment via positive matrix factorization (PMF) model revealed that industrial processes as the largest source (44%) of observed AHs, followed by solvent usage (21%), vehicle exhaust (19%), coal combustion (11%) and coking processes (6%). In the perspective of PAHs sources, coal combustion emissions were identified as the dominating factor of a share of 41%-52% in eastern China. Our findings complemented the simultaneously monitoring information of PAHs and MAHs in eastern China, revealed the importance of PAHs to SOA formation and highlighted the necessity of formulating strategies to reduce emissions from anthropogenic sources and reduce risks to human health.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Hidrocarburos Policíclicos Aromáticos , Humanos , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , China , Carbón Mineral/análisisRESUMEN
Both concentrations and emissions of many air pollutants have been decreasing due to implement of control measures in China, in contrast to the fact that an increase in emissions of non-methane hydrocarbons (NMHCs) has been reported. This study employed seven years continuous NMHCs measurements and the related activities data of Shanghai, a megacity in China, to explore evolution of emissions and effectiveness of air pollution control measures. The mixing ratio of NMHCs showed no statistical interannual changes, of which their compositions exhibited marked changes. This resulted in a decreasing trend of ozone formation potential by 3.8%/year (p < 0.05, the same below), which should be beneficial to ozone pollution mitigation as its production in Shanghai is in the NMHCs-limited regime. Observed alkanes, aromatics and acetylene changed by +3.7%/year, -5.9%/year and -7.4%/year, respectively, and alkenes showed no apparent trend. NMHCs sources were apportioned by a positive matrix factorization model. Accordingly, vehicular emissions (-5.9%/year) and petrochemical industry emissions (-7.1%/year) decreased significantly, but the decrease slowed down; significant reduction in solvent usage (-9.0%/year) appeared after 2010; however, emissions of natural gas (+12.6%/year) and fuel evaporation (with an increasing fraction) became more important. The inconsistency between observations and inventories was found in interannual trend and speciation as well as source contributions, emphasizing the need for further validation in NMHCs emission inventory. Our study confirms the effectiveness of measures targeting mobile and centralized emissions from industrial sources and reveals a need focusing on fugitive emissions, which provided new insights into future air policies in polluted region.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Alcanos/análisis , Alquenos/análisis , Alquinos , China , Monitoreo del Ambiente/métodos , Hidrocarburos/análisis , Metano , Gas Natural , Ozono/química , Solventes , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisisRESUMEN
The Community Multiscale Air Quality model (CMAQv5.2) was implemented to investigate the sources and sinks of oxygenated volatile organic compounds (OVOCs) during a high O3 and high PM2.5 season in the Yangtze River Delta (YRD) region, based on constraints from observations. The model tends to overpredict non-oxygenated VOCs and underpredict OVOCs, which has been improved with adjusted emissions of all VOCs. The OVOCs in the YRD are dominated by ketones, aldehydes, and alcohols. Ketones and aldehydes mainly originate from direct emissions and secondary formation in the northern YRD, and primarily originate from secondary formation in the southern part influenced by biogenic emissions. The concentration of secondary organic aerosols (SOA) produced by OVOCs is 0.5-1.5 µg/m3, with 40-80% originated from organic nitrates, 20-70% originated from dicarbonyls, and 0-20% originated from isoprene epoxydiols. The influences of OVOCs on the atmospheric oxidation capacity are dominated by the OH⢠pathway during the day (â¼350%) and by the NO3⢠pathway at night (â¼150%). Consequently, O3 is enhanced by 30-70% in the YRD. Aerosols are also enhanced by 50-140%, 20-80%, and â¼20% for SOA, nitrate, and sulfate, respectively.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Aldehídos , China , Monitoreo del Ambiente , Cetonas , Ozono/análisisRESUMEN
Secondary organic aerosol, formed through atmospheric oxidation processes, plays an important role in affecting climate and human health. In this study, we conducted a comprehensive campaign in the megacity of Shanghai during the 2019 International Import Expo (EXPO), with the first deployment of a chemical ionizationâOrbitrap mass spectrometer for ambient measurements. With the ultrahigh mass resolving power of the Orbitrap mass analyzer (up to 140,000 Th/Th) and capability in dealing with massive spectral data sets by positive matrix factorization, we were able to identify the major gas-phase oxidation processes leading to the formation of oxygenated organic molecules (OOM) in Shanghai. Nine main factors from three independent sub-range analysis were identified. More than 90% of OOM are of anthropogenic origin and >60% are nitrogen-containing molecules, mainly dominated by the RO2 + NO and/or NO3 chemistry. The emission control during the EXPO showed that even though the restriction was effectual in significantly lowering the primary pollutants (20-70% decrease), the secondary oxidation products responded less effectively (14% decrease), or even increased (50 to >200%) due to the enhancement of ozone and the lowered condensation sink, indicating the importance of a stricter multi-pollutant coordinated strategy in primary and secondary pollution mitigation.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles/química , Contaminantes Atmosféricos/análisis , China , Humanos , Ozono/análisis , Material Particulado/análisisRESUMEN
Air quality in megacities is significantly impacted by emissions from vehicles and other urban-scale human activities. Amid the outbreak of Coronavirus (COVID-19) in January 2020, strict policies were in place to restrict people's movement, bringing about steep reductions in pollution activities and notably lower ambient concentrations of primary pollutants. In this study, we report hourly measurements of fine particulate matter (i.e., PM2.5) and its comprehensive chemical speciation, including elemental and molecular source tracers, at an urban site in Shanghai spanning a period before the lockdown restriction (BR) (1 to 23 Jan. 2020) and during the restriction (DR) (24 Jan. to 9 Feb. 2020). The overall PM2.5 was reduced by 27% from 56.2 ± 40.9 (BR) to 41.1 ± 25.3 µg m-3 (DR) and the organic carbon (OC) in PM2.5 was similar, averaged at 5.45 ± 2.37 (BR) and 5.42 ± 1.75 µgC m-3 (DR). Reduction in nitrate was prominent, from 18.1 (BR) to 9.2 µg m-3 (DR), accounting for most of the PM2.5 decrease. Source analysis of PM2.5 using positive matrix factorization modeling of comprehensive chemical composition, resolved nine primary source factors and five secondary source factors. The quantitative source analysis confirms reduced contributions from primary sources affected by COVID-19, with vehicular emissions showing the largest drop, from 4.6 (BR) to 0.61 µg m-3 (DR) and the percentage change (-87%) in par with vehicle traffic volume and fuel sale statistics (-60% to -90%). In the same time period, secondary sources are revealed to vary in response to precursor reductions from the lockdown, with two sources showing consistent enhancement while the other three showing reductions, highlighting the complexity in secondary organic aerosol formation and the nonlinear response to broad primary precursor pollutants. The combined contribution from the two secondary sources to PM2.5 increased from 7.3 ± 6.6 (BR) to 14.8 ± 9.3 µg m-3 (DR), partially offsetting the reductions from primary sources and nitrate while their increased contribution to OC, from 1.6 ± 1.4 (BR) to 3.2 ± 2.0 µgC m-3 (DR), almost offset the decrease coming from the primary sources. Results from this work underscore challenges in predicting the benefits to PM2.5 improvement from emission reductions of common urban primary sources.
Asunto(s)
COVID-19/patología , Carbono/análisis , Material Particulado/análisis , Biomasa , COVID-19/virología , Carbono/química , China , Análisis por Conglomerados , Monitoreo del Ambiente/métodos , Humanos , Nitratos/análisis , Cuarentena , SARS-CoV-2/aislamiento & purificaciónRESUMEN
A modified community multiscale air quality model, which can simulate the regional distributions of 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a marker species for monoaromatic secondary organic aerosol (SOA), was applied to assess the applicability of using the DHOPA to aromatic SOA mass ratio (fSOA) from smog chamber experiments to estimate aromatic SOA during a three-week wintertime air quality campaign in urban Shanghai. The modeled daily DHOPA concentrations based on the chamber-derived mass yields agree well with the organic marker field measurements (R = 0.79; MFB = 0.152; and MFE = 0.440). Two-thirds of the DHOPA are from the oxidation of ARO1 (lumped less-reactive aromatic species; mostly toluene), with the rest from ARO2 (lumped more-reactive aromatic species; mostly xylenes). Modeled DHOPA is mainly in the particle phase under ambient organic aerosol (OA) loading but could exhibit significant gas-particle partitioning when a higher estimation of the DHOPA vapor pressure is used. The modeled fSOA shows a strong dependence on the OA loading when only semivolatile aromatic SOA components are included in the fSOA calculations. However, this OA dependence becomes weaker when non-volatile oligomers and dicarbonyl SOA products are considered. A constant fSOA value of â¼0.002 is determined when all aromatic SOA components are included, which is a factor of 2 smaller than the commonly applied chamber-based fSOA value of 0.004 for toluene. This model-derived fSOA value does not show much spatial variation and is not sensitive to alternative estimates of DHOPA vapor pressures and SOA yields, and thus provides an appropriate scaling factor to assess aromatic SOA from DHOPA measurements. This result helps refine the quantification of SOA attributable to monoaromatic hydrocarbons in urban environments and thereby facilitates the evaluation of control measures targeting these specific precursors.
Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Modelos Químicos , ToluenoRESUMEN
The International Agency of Research on Cancer identifies high-temperature frying, which features prominently in Chinese cooking, as producing group 2A carcinogens. This study simultaneously characterized particulate and gaseous-phase cooking emissions, monitored their reactive oxygen species (ROS) concentrations, and evaluated their impact on genetic damage and expression in exposed human bronchial epithelial cells. Five types of edible oil, three kinds of seasonings, and two dishes were assessed. Among tested edible oils, heating of soybean oil released the largest particle number concentration (2.09 × 1013 particles/(g cooking material and oil)·h) and volatile organic compounds (VOCs) emissions (12103.42 µg/(g cooking material and oil)·h). Heating of lard produced the greatest particle mass concentration (0.75 mg/(g cooking material and oil)·h). The main finding was that sunflower and rapeseed oils produced the highest ROS concentrations (80.48 and 71.75 nmol/(g cooking material and oil)·h, respectively). ROS formation most likely occurred during the autoxidation of both polyunsaturated and monounsaturated fatty acids. Among all the tested parameters, only ROS concentrations exhibited consistency with cell viability and showed significant correlations with the expression levels of CYP1A1, HIF-1a, and especially with IL-8 (the marker for oxidative stress within the cell). These findings indicate that ROS concentration is potentially a suitable metric for direct assessment of exposure levels and potential toxicity.
Asunto(s)
Compuestos Orgánicos Volátiles , Culinaria , Células Epiteliales , Humanos , Aceites de Plantas , Especies Reactivas de Oxígeno , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/toxicidadRESUMEN
The production of secondary organic aerosols (SOA) from toluene photochemistry in Shanghai, a megacity of China, was estimated by two approaches, the parametrization method and the tracer-based method. The temporal profiles of toluene, together with other fifty-six volatile organic compounds (VOCs), were characterized. Combing with the vapor wall loss corrected SOA yields derived from chamber experiments, the estimated toluene SOA by the parametrization method as embodied in the two-product model contributes up to â¼40% of the total SOA budget during summertime. 2,3-Dihydroxy-4-oxopentanoic acid (DHOPA), a unique product from the OH-initiated oxidation of toluene in the presence of elevated NOx, was used as a tracer to back calculate the toluene SOA concentrations. By taking account for the effect of gas-particle partitioning processes on the fraction of DHOPA in the particle phase, the estimated toluene SOA concentrations agree within â¼33% with the estimates by the parametrization method. The agreement between these two independent approaches highlight the need to update current model frameworks with recent laboratory advances for a more accurate representation of SOA formation in regions with substantial anthropogenic emissions.
Asunto(s)
Contaminantes Atmosféricos , Tolueno , Aerosoles , China , Oxidación-Reducción , FotoquímicaRESUMEN
Intermediate volatility organic compound (IVOC) emissions from a large cargo vessel were characterized under real-world operating conditions using an on-board measurement system. Test ship fuel-based emission factors (EFs) of total IVOCs were determined for two fuel types and seven operating conditions. The average total IVOC EF was 1003 ± 581 mg·kg-fuel-1, approximately 0.76 and 0.29 times the EFs of primary organic aerosol (POA) emissions from low-sulfur fuel (LSF, 0.38 wt % S) and high-sulfur fuel (HSF, 1.12 wt % S), respectively. The average total IVOC EF from LSF was 2.4 times that from HSF. The average IVOC EF under low engine load (15%) was 0.5-1.6 times higher than those under 36%-74% loads. An unresolved complex mixture (UCM) contributed 86.1 ± 1.9% of the total IVOC emissions. Ship secondary organic aerosol (SOA) production was estimated to be 546.5 ± 284.1 mg·kg-fuel-1; IVOCs contributed 98.9 ± 0.9% of the produced SOA on average. Fuel type was the dominant determinant of ship IVOC emissions, IVOC volatility distributions, and SOA production. The ship emitted more IVOC mass, produced higher proportions of volatile organic components, and produced more SOA mass when fueled with LSF than when fueled with HSF. When reducing ship POA emissions, more attention should be paid to commensurate control of ship SOA formation potential.
Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Aerosoles , Compuestos Orgánicos , Navíos , VolatilizaciónRESUMEN
How did the motorcycle emissions evolve during the economic development in China? To address data gaps, this study firstly measured the volatile organic compound (VOC) and intermediate-volatility organic compound (IVOC) emissions from motorcycles. The results confirmed that the emission control of motorcycles, especially small-displacement motorcycles, significantly lagged behind other gasoline-powered vehicles. For the China IV motorcycles, the average VOC and IVOC emission factors (EFs) were 2.74 and 7.78 times higher than the China V-VI light-duty gasoline vehicles, respectively. The notable high IVOC emissions were attributed to a dual influence from gasoline and lubricating oil. Furthermore, based on the complete EF dataset and economy-related activity data, a county-level emission inventory was developed in China. Motorcycle VOC and IVOC emissions changed from 2536.48 Gg and 197.19 Gg in 2006 to 594.21 Gg and 12.66 Gg in 2020, respectively. The absence of motorcycle IVOC emissions in the existed vehicular inventories led to an underestimation of up to 20%. Across the 15 years, the motorcycle VOC and IVOC emission hotspots were concentrated in the undeveloped regions, with the rural emissions reaching 5.81-10.14 times those of the urban emissions. This study provides the first-hand and close-to-realistic data to support motorcycle emission management and accurate air quality simulations.
RESUMEN
To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C10-C26 n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods. However, the decline in BTH and CBs was only observed during CIIE-2019. Secondary organic aerosol (SOA) formation from alkanes, PAHs and BTH was evaluated under atmospheric conditions, revealing considerable SOA contributions from dimethylnaphthalenes and BTH. Positive matrix factorization (PMF) analysis further revealed that life-related sources, such as cooking and residential emissions, make a noticeable contribution (21.6%) in addition to the commonly concerned gasoline-vehicle sources (31.5%), diesel-related emissions (20.8%), industrial emissions (18.6%) and ship emissions (7.5%). These findings provide valuable insights into the efficacy of the implemented measures in reducing atmospheric I/SVOCs levels. Moreover, our results highlight the significance of exploring additional individual species of I/SVOCs and life-related sources for further research and policy development.
Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , Alcanos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Aerosoles/análisis , Emisiones de Vehículos/análisis , Material Particulado/análisisRESUMEN
As one of important precursors of secondary organic aerosol (SOA), intermediate volatile organic compounds (IVOCs) have attracted much attention in recent years. Most of the previous studies however largely focused on characteristics of IVOCs from different emission sources, while data from field observations to study their temporal variations was limited for lacking the sufficient time resolution monitoring data. In this study, an online thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed to generate monitor data with a three-hour time resolution for gaseous atmospheric IVOCs. The method used two multi-sorbent traps that alternated for conducting sample collection and sample analysis. Compounds of C12C22 n-alkanes and 2-4 ring PAHs were chosen as surrogates to evaluate the performance of this method. Regression coefficients of external calibration curves were greater than 0.93 and 0.96 for all individual n-alkanes and PAHs, respectively. Average relative standard deviation (RSD) values among replicate samples spiked at 3 ng for each individual standard were 9% ± 5%. The detection limits of this method for individual n-alkanes and PAHs were 3.1-16.2 ng/m3 and 1.0-2.7 ng/m3, respectively. Atmospheric IVOCs were continuously monitored from September 28 to 30 and October 22 to November 9 in 2018, in an urban area of Shanghai. Besides targeted n-alkanes and PAHs, unspeciated complex mixtures (UCM) of IVOCs as well as total-IVOCs concentrations in the atmosphere were also determined. Measured concentrations and compositions of gaseous IVOCs in the atmosphere in this study were comparable to other similar studies.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Alcanos/química , China , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Compuestos Orgánicos Volátiles/análisisRESUMEN
Ground-level O3 pollution has been continuously worsening in China despite gradual improvement in other major pollutant levels. Understanding the sensitivity of O3 production to its precursors (OPS) is a prerequisite for formulating effective O3 control measures, but this has been hampered by significant discrepancies in OPS produced by traditional identification approaches using observation-based models (OBM) and emission-based models (EBM). In this study, by applying OBM and EBM in parallel within a month having significant O3 pollution in Shanghai, China, we demonstrated that a lack of carbonyl input, overestimation in NO2 monitoring data, and differences in simulation period and emission reduction area were the core factors leading to OPS discrepancies, and that a reliable OPS cannot be obtained unless these factors are reconciled. By collectively addressing these factors, the number of days with a consistent OPS from both models increased from 6-7 to 20-21 in a month, and the R value defined to quantify the discrepancy decreased by â¼55%. The contributions of these factors to OPS discrepancy differed greatly in urban and suburban settings, mainly caused by differences in pollutant emission and transport characteristics. Overall, OPS identified solely by OBM or EBM is associated with great uncertainty, while reliable OPS estimation can be achieved by a collective application of OBM and EBM with consensus on the above factors. The method demonstrated here could be applied to other photo-chemically active regions worldwide as part of efforts to address ozone pollution.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Compuestos Orgánicos Volátiles/análisisRESUMEN
Identification of air toxics emitted from light-duty gasoline vehicles (LDGVs) is expected to better protect human health. Here, the volatile organic compound (VOC) and intermediate VOC (IVOC) emissions in the high-emitted start stages were measured on a chassis dynamometer under normal and extreme temperatures for China 6 LDGVs. Low temperature enhanced the emission rates (ERs) of both VOCs and IVOCs. The VOC ERs were averaged 5.19 ± 2.74 times higher when the temperature dropped from 23 °C to 0 °C, and IVOCs were less sensitive to temperature change with an enlargement of 2.27 ± 0.19 times. Aromatics (46.75 ± 2.83%) and alkanes (18.46 ± 1.21%) dominated the cold start VOC emissions under normal temperature, which was quite different from hot running emission profiles. From the perspective of emission inventories, changes in the speciated composition of VOCs and IVOCs were less important than that in the actual magnitude of ERs under cold conditions. However, changes in the ERs and emission profiles were equally important at high temperatures. Furthermore, high time-resolved measurements revealed that low temperature enhanced both the emission peak and peak duration of fuel components and incomplete combustion products during cold start, while high temperature only increased the peak concentration of fuel components.
Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Gasolina/análisis , Humanos , Vehículos a Motor , Temperatura , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisisRESUMEN
In this study, real-time measurement of Volatile Organic Compounds (VOCs) was conducted at an urban site in Changzhou, a typical corridor city in the Yangtze River Delta (YRD) region in China, by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) during 2019 China International Import Expo (CIIE) episode. An improved method based on Air Quality Index (AQI) value is applied to identify polluted and clean periods. Diurnal pattern of VOC levels revealed elevated photochemical reactivity during polluted periods. Five VOC sources were identified by Positive Matrix Factorization (PMF) model, including secondary formation (22.71 ± 12.33%), biogenic (21.50% ± 11.76%), solvent usage (20.50 ± 10.07%), vehicle exhaust (18.32 ± 8.32%), and industrial process and fuel usage (16.96 ± 13.21%). The mean contribution of vehicular exhaust was 10.84% higher during the nighttime than the daytime under polluted days. The biogenic source contributed more during clean periods, while the secondary formation presented the opposite. Spatial analysis displayed that the VOC concentration was higher in the S and SSE. In terms of the regional transport, short-distance air masses from the northeast and the south within the YRD region led to high VOC levels and biogenic VOC derived from the ocean might affect the entire region. Stringent emission control policies enforced over the YRD for 2019 CIIE provided an excellent opportunity to determine the source-receptor response. As joint control area, the VOC level of Changzhou exhibited a substantial reduction and the VOC amounts emitted by solvent usage showed the biggest decrease (-58%). The findings of this study highlight the superiority of high time-resolved data in identifying the dynamic variation pattern (with the change of time and wind) of VOC levels and emission intensities.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Compuestos Orgánicos Volátiles/análisisRESUMEN
Atmospheric peroxyacetyl nitrate (PAN) and ozone (O3) are two typical indicators for photochemical pollution that have adverse effects on the ecosystem and human health. Observation networks for these pollutants have been expanding in developed regions of China, such as North China Plain (NCP) and Pearl River Delta (PRD), but are sparse in Yangtze River Delta (YRD), meaning their concentration and influencing factors remain poorly understood. Here, we performed a one-year measurement of atmospheric PAN, O3, particulate matter with aerodynamic diameter smaller than 2.5 µm (PM2.5), nitrogen oxides (NOx), carbon monoxide (CO), and meteorological parameters from December 2016 to November 2017 in Shanghai. Overall, high hourly maximum PAN and O3 were found to be 7.0 and 185 ppbv in summer, 6.2 and 146 ppbv in autumn, 5.8 and 137 ppbv in spring, and 6.0 and 76.7 ppbv in winter, respectively. Continental air masses probably carried atmospheric pollutants to the sampling site, while frequent maritime winds brought in less polluted air masses. Furthermore, positive correlations (R: 0.72-0.85) between PAN and O3 were found in summer, indicating a predominant role of photochemistry in their formation. Unlike in summer, weak or no correlations between PAN and O3 were featured during the other seasons, especially in winter, due to their different loss pathways. Unexpectedly, positive correlations between PAN and PM2.5 were found in all seasons. During summer, moderate correlation could be attributed to the strong photochemistry acting as a common driver in the formation of secondary aerosols and PAN. During winter, high PM2.5 might promote PAN production through HONO production, hence resulting in a good positive correlation. Additionally, the loss of PAN by thermal decomposition (TPAN) only accounted for a small fraction (ca. 1%) of the total (PAN + TPAN) during a typical winter episode, while it significantly reached 14.4 ppbv (71.1% of the total) in summer.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/análisis , China , Ecosistema , Monitoreo del Ambiente , Humanos , Ozono/análisis , Material Particulado/análisis , Ácido Peracético/análogos & derivados , Estaciones del AñoRESUMEN
Ambient carbonyl compounds play an important role in tropospheric atmospheric chemistry. Primary emissions and photochemical formation are both sources of carbonyls, and therefore it is challenging work to analyze their sources. In this study, carbonyl sources were apportioned using the source tracer ratio method (STR) and positive matrix factorization model (PMF) based on offline carbonyls observations at a site in Nanjing during March 2017. Eleven carbonyl compounds were detected, and their total concentrations were in the range of 2.57×10-9-22.83×10-9. Formaldehyde, acetaldehyde, and acetone were the main components, accounting for 36.8%, 21.6%, and 18.5% of the average concentration of eleven carbonyl compounds, respectively. The influences of tracer selection and background concentrations on the results of source apportionment using the STR method based on comparing the results of acetylene and toluene as tracers and the 5th and 10th percentages as background concentrations are presented. Five sources were resolved by PMF, including traffic emission, the petrochemical & chemical industry, paint & solvent use, secondary formation & background, and the chemical industry. Secondary formation & background sources were the largest contributors of carbonyl compounds, contributing 56.4%, 48.2%, and 58.3% to formaldehyde, acetaldehyde, and acetone, respectively. By comparing the carbonyl source apportionment results by STR and PMF, it was found that the STR depends on the selection of tracers. When the STR is applied in the areas with complex sources, it is difficult to use a tracer to indicate anthropogenic source emissions, and therefore it is not a suitable method for carbonyl source apportionment.