Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Nature ; 616(7958): 747-754, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046084

RESUMEN

Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.


Asunto(s)
Hematopoyesis Clonal , Susceptibilidad a Enfermedades , Hepatitis , Cirrosis Hepática , Animales , Ratones , Hematopoyesis Clonal/genética , Hepatitis/genética , Inflamación/genética , Cirrosis Hepática/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Oportunidad Relativa , Progresión de la Enfermedad
2.
Hum Mol Genet ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879759

RESUMEN

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality, with large disparities in incidence rates between Black and White Americans. Polygenic risk scores (PRSs) limited to variants discovered in genome-wide association studies in European-ancestry samples can identify European-ancestry individuals at high risk of VTE. However, there is limited evidence on whether high-dimensional PRS constructed using more sophisticated methods and more diverse training data can enhance the predictive ability and their utility across diverse populations. We developed PRSs for VTE using summary statistics from the International Network against Venous Thrombosis (INVENT) consortium genome-wide association studies meta-analyses of European- (71 771 cases and 1 059 740 controls) and African-ancestry samples (7482 cases and 129 975 controls). We used LDpred2 and PRS-CSx to construct ancestry-specific and multi-ancestry PRSs and evaluated their performance in an independent European- (6781 cases and 103 016 controls) and African-ancestry sample (1385 cases and 12 569 controls). Multi-ancestry PRSs with weights tuned in European-ancestry samples slightly outperformed ancestry-specific PRSs in European-ancestry test samples (e.g. the area under the receiver operating curve [AUC] was 0.609 for PRS-CSx_combinedEUR and 0.608 for PRS-CSxEUR [P = 0.00029]). Multi-ancestry PRSs with weights tuned in African-ancestry samples also outperformed ancestry-specific PRSs in African-ancestry test samples (PRS-CSxAFR: AUC = 0.58, PRS-CSx_combined AFR: AUC = 0.59), although this difference was not statistically significant (P = 0.34). The highest fifth percentile of the best-performing PRS was associated with 1.9-fold and 1.68-fold increased risk for VTE among European- and African-ancestry subjects, respectively, relative to those in the middle stratum. These findings suggest that the multi-ancestry PRS might be used to improve performance across diverse populations to identify individuals at highest risk for VTE.

3.
PLoS Biol ; 21(6): e3002121, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37315073

RESUMEN

Pluripotency defines the unlimited potential of individual cells of vertebrate embryos, from which all adult somatic cells and germ cells are derived. Understanding how the programming of pluripotency evolved has been obscured in part by a lack of data from lower vertebrates; in model systems such as frogs and zebrafish, the function of the pluripotency genes NANOG and POU5F1 have diverged. Here, we investigated how the axolotl ortholog of NANOG programs pluripotency during development. Axolotl NANOG is absolutely required for gastrulation and germ-layer commitment. We show that in axolotl primitive ectoderm (animal caps; ACs) NANOG and NODAL activity, as well as the epigenetic modifying enzyme DPY30, are required for the mass deposition of H3K4me3 in pluripotent chromatin. We also demonstrate that all 3 protein activities are required for ACs to establish the competency to differentiate toward mesoderm. Our results suggest the ancient function of NANOG may be establishing the competence for lineage differentiation in early cells. These observations provide insights into embryonic development in the tetrapod ancestor from which terrestrial vertebrates evolved.


Asunto(s)
Proteínas de Homeodominio , Células Madre Pluripotentes , Animales , Proteínas de Homeodominio/metabolismo , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Pez Cebra/genética , Diferenciación Celular , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Regulación del Desarrollo de la Expresión Génica
4.
Arterioscler Thromb Vasc Biol ; 43(7): e254-e269, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37128921

RESUMEN

BACKGROUND: Antithrombin, PC (protein C), and PS (protein S) are circulating natural anticoagulant proteins that regulate hemostasis and of which partial deficiencies are causes of venous thromboembolism. Previous genetic association studies involving antithrombin, PC, and PS were limited by modest sample sizes or by being restricted to candidate genes. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, we meta-analyzed across ancestries the results from 10 genome-wide association studies of plasma levels of antithrombin, PC, PS free, and PS total. METHODS: Study participants were of European and African ancestries, and genotype data were imputed to TOPMed, a dense multiancestry reference panel. Each of the 10 studies conducted a genome-wide association studies for each phenotype and summary results were meta-analyzed, stratified by ancestry. Analysis of antithrombin included 25 243 European ancestry and 2688 African ancestry participants, PC analysis included 16 597 European ancestry and 2688 African ancestry participants, PSF and PST analysis included 4113 and 6409 European ancestry participants. We also conducted transcriptome-wide association analyses and multiphenotype analysis to discover additional associations. Novel genome-wide association studies and transcriptome-wide association analyses findings were validated by in vitro functional experiments. Mendelian randomization was performed to assess the causal relationship between these proteins and cardiovascular outcomes. RESULTS: Genome-wide association studies meta-analyses identified 4 newly associated loci: 3 with antithrombin levels (GCKR, BAZ1B, and HP-TXNL4B) and 1 with PS levels (ORM1-ORM2). transcriptome-wide association analyses identified 3 newly associated genes: 1 with antithrombin level (FCGRT), 1 with PC (GOLM2), and 1 with PS (MYL7). In addition, we replicated 7 independent loci reported in previous studies. Functional experiments provided evidence for the involvement of GCKR, SNX17, and HP genes in antithrombin regulation. CONCLUSIONS: The use of larger sample sizes, diverse populations, and a denser imputation reference panel allowed the detection of 7 novel genomic loci associated with plasma antithrombin, PC, and PS levels.


Asunto(s)
Proteína C , Proteína S , Proteína C/genética , Proteína S/genética , Estudio de Asociación del Genoma Completo , Antitrombinas , Transcriptoma , Anticoagulantes , Antitrombina III/genética , Polimorfismo de Nucleótido Simple
6.
Am J Hum Genet ; 107(2): 211-221, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32649856

RESUMEN

Dual antiplatelet therapy reduces ischemic events in cardiovascular disease, but it increases bleeding risk. Thrombin receptors PAR1 and PAR4 are drug targets, but the role of thrombin in platelet aggregation remains largely unexplored in large populations. We performed a genome-wide association study (GWAS) of platelet aggregation in response to full-length thrombin, followed by clinical association analyses, Mendelian randomization, and functional characterization including iPSC-derived megakaryocyte and platelet experiments. We identified a single sentinel variant in the GRK5 locus (rs10886430-G, p = 3.0 × 10-42) associated with increased thrombin-induced platelet aggregation (ß = 0.70, SE = 0.05). We show that disruption of platelet GRK5 expression by rs10886430-G is associated with enhanced platelet reactivity. The proposed mechanism of a GATA1-driven megakaryocyte enhancer is confirmed in allele-specific experiments. Utilizing further data, we demonstrate that the allelic effect is highly platelet- and thrombin-specific and not likely due to effects on thrombin levels. The variant is associated with increased risk of cardiovascular disease outcomes in UK BioBank, most strongly with pulmonary embolism. The variant associates with increased risk of stroke in the MEGASTROKE, UK BioBank, and FinnGen studies. Mendelian randomization analyses in independent samples support a causal role for rs10886430-G in increasing risk for stroke, pulmonary embolism, and venous thromboembolism through its effect on thrombin-induced platelet reactivity. We demonstrate that G protein-coupled receptor kinase 5 (GRK5) promotes platelet activation specifically via PAR4 receptor signaling. GRK5 inhibitors in development for the treatment of heart failure and cancer could have platelet off-target deleterious effects. Common variants in GRK5 may modify clinical outcomes with PAR4 inhibitors, and upregulation of GRK5 activity or signaling in platelets may have therapeutic benefits.


Asunto(s)
Plaquetas/fisiología , Enfermedades Cardiovasculares/genética , Receptores de Trombina/genética , Transducción de Señal/genética , Trombina/genética , Alelos , Embolia/genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Insuficiencia Cardíaca/genética , Humanos , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Neoplasias/genética , Activación Plaquetaria/genética , Agregación Plaquetaria/genética , Receptor PAR-1/genética , Accidente Cerebrovascular/genética
7.
Blood ; 137(7): 959-968, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33094331

RESUMEN

Genome-wide association studies have identified common variants associated with platelet-related phenotypes, but because these variants are largely intronic or intergenic, their link to platelet biology is unclear. In 290 normal subjects from the GeneSTAR Research Study (110 African Americans [AAs] and 180 European Americans [EAs]), we generated whole-genome sequence data from whole blood and RNA sequence data from extracted nonribosomal RNA from 185 induced pluripotent stem cell-derived megakaryocyte (MK) cell lines (platelet precursor cells) and 290 blood platelet samples from these subjects. Using eigenMT software to select the peak single-nucleotide polymorphism (SNP) for each expressed gene, and meta-analyzing the results of AAs and EAs, we identify (q-value < 0.05) 946 cis-expression quantitative trait loci (eQTLs) in derived MKs and 1830 cis-eQTLs in blood platelets. Among the 57 eQTLs shared between the 2 tissues, the estimated directions of effect are very consistent (98.2% concordance). A high proportion of detected cis-eQTLs (74.9% in MKs and 84.3% in platelets) are unique to MKs and platelets compared with peak-associated SNP-expressed gene pairs of 48 other tissue types that are reported in version V7 of the Genotype-Tissue Expression Project. The locations of our identified eQTLs are significantly enriched for overlap with several annotation tracks highlighting genomic regions with specific functionality in MKs, including MK-specific DNAse hotspots, H3K27-acetylation marks, H3K4-methylation marks, enhancers, and superenhancers. These results offer insights into the regulatory signature of MKs and platelets, with significant overlap in genes expressed, eQTLs detected, and enrichment within known superenhancers relevant to platelet biology.


Asunto(s)
Plaquetas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Megacariocitos/metabolismo , ARN/genética , Transcriptoma , Adulto , Población Negra/genética , Plaquetas/citología , Células Cultivadas , Femenino , Ontología de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Megacariocitos/citología , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , ARN/biosíntesis , RNA-Seq , Población Blanca/genética , Secuenciación Completa del Genoma
8.
Platelets ; 34(1): 2238835, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37609998

RESUMEN

Arterial tonometry and vascular calcification measures are useful in cardiovascular disease (CVD) risk assessment. Prior studies found associations between tonometry measures, arterial calcium, and CVD risk. Activated platelets release angiopoietin-1 and other factors, which may connect vascular structure and platelet function. We analyzed arterial tonometry, platelet function, aortic, thoracic and coronary calcium, and thoracic and abdominal aorta diameters measured in the Framingham Heart Study Gen3/NOS/OMNI-2 cohorts (n = 3,429, 53.7% women, mean age 54.4 years ±9.3). Platelet reactivity in whole blood or platelet-rich plasma was assessed using 5 assays and 7 agonists. We analyzed linear mixed effects models with platelet reactivity phenotypes as outcomes, adjusting for CVD risk factors and family structure. Higher arterial calcium trended with higher platelet reactivity, whereas larger aortic diameters trended with lower platelet reactivity. Characteristic impedance (Zc) and central pulse pressure positively trended with various platelet traits, while pulse wave velocity and Zc negatively trended with collagen, ADP, and epinephrine traits. All results did not pass a stringent multiple test correction threshold (p < 2.22e-04). The diameter trends were consistent with lower shear environments invoking less platelet reactivity. The vessel calcium trends were consistent with subclinical atherosclerosis and platelet activation being inter-related.


What is the context? Prior research has reported that measures of vascular system-influencing proteins such as angiopoietin-2, arterial calcium plaque formation, and arterial stiffness assessed by tonometry are associated with CVD risk.Since activated platelets produce and release vascular proteins like angiopoietin when activated, and microparticles that interact with endothelium, release of the foregoing mediators could provide one way in which vascular structure and platelet function influence each other.To our knowledge, no prior studies have directly investigated associations between these measures in a large sample. This investigation relates platelet function to arterial tonometry, aortic and arterial diameter, and arterial calcium measures in the Framingham Heart Study (FHS) Gen3/NOS/OMNI-2 cohorts (n = 3,429).What's new? Generally, higher arterial calcium measures trended with higher platelet reactivity, whereas larger aortic diameters trended with lower platelet reactivity.Arterial tonometry measures had positive and negative trends with platelet functions, including platelet measures with opposite relations to negative-inverse carotid-femoral pulse wave velocity (niCFPWV) and characteristic impedance (Zc). All tonometry, calcium, and diameter results did not reach a more stringent multiple testing threshold (p < 2.22e-04).What's the impact? The aortic diameter trends are consistent with lower shear stress invoking less platelet reactivity.The vessel calcium trends are consistent with increased vascular calcium buildup that could provoke platelet activation, thereby contributing to increased blood clot risk. Conversely, increased platelet activation could contribute to increased inflammation and thrombosis, leading to calcification in the arterial wall.


Asunto(s)
Aterosclerosis , Calcio , Femenino , Masculino , Humanos , Análisis de la Onda del Pulso , Presión Sanguínea , Activación Plaquetaria
9.
Proc Natl Acad Sci U S A ; 117(5): 2560-2569, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964835

RESUMEN

De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains <1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability (h2), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.


Asunto(s)
Amish/genética , Genoma Humano , Adulto , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Genética de Población , Heterocigoto , Humanos , Masculino , Mutación , Linaje , Secuenciación Completa del Genoma , Adulto Joven
10.
Am J Hum Genet ; 105(4): 706-718, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564435

RESUMEN

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.


Asunto(s)
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Variación Genética , Hemoglobina Glucada/genética , Grupos de Población/genética , Medicina de Precisión , Estudios de Cohortes , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple
11.
Am J Hum Genet ; 104(2): 260-274, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639324

RESUMEN

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.


Asunto(s)
Estudios de Asociación Genética , Modelos Genéticos , Secuenciación Completa del Genoma , Cromosomas Humanos Par 4/genética , Nube Computacional , Femenino , Fibrinógeno/análisis , Fibrinógeno/genética , Genética de Población , Humanos , Masculino , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisión , Proyectos de Investigación , Factores de Tiempo , Estados Unidos
12.
Circ Res ; 127(9): 1182-1194, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32781905

RESUMEN

RATIONALE: Mean platelet volume (MPV) and platelet count (PLT) are platelet measures that have been linked to cardiovascular disease (CVD) and mortality risk. Identifying protein biomarkers for these measures may yield insights into CVD mechanisms. OBJECTIVE: We aimed to identify causal protein biomarkers for MPV and PLT among 71 CVD-related plasma proteins measured in FHS (Framingham Heart Study) participants. METHODS AND RESULTS: We conducted integrative analyses of genetic variants associated with PLT/MPV with protein quantitative trait locus variants associated with plasma proteins followed by Mendelian randomization to infer causal relations of proteins for PLT/MPV. We also tested protein-PLT/MPV association in FHS participants. Using induced pluripotent stem cell-derived megakaryocyte clones that produce functional platelets, we conducted RNA-sequencing and analyzed expression differences between low- and high-platelet producing clones. We then performed small interfering RNA gene knockdown experiments targeting genes encoding proteins with putatively causal platelet effects in megakaryocyte clones to examine effects on platelet production. In protein-trait association analyses, ten proteins were associated with MPV and 31 with PLT. Mendelian randomization identified 4 putatively causal proteins for MPV and 4 for PLT. GP-5 (Glycoprotein V), GRN (granulin), and MCAM (melanoma cell adhesion molecule) were associated with PLT, while MPO (myeloperoxidase) showed significant association with MPV in both analyses. RNA-sequencing analysis results were directionally concordant with observed and Mendelian randomization-inferred associations for GP-5, GRN, and MCAM. In siRNA gene knockdown experiments, silencing GP-5, GRN, and MPO decreased PLTs. Genome-wide association study results suggest several of these may be linked to CVD risk. CONCLUSIONS: We identified 4 proteins that are causally linked to PLTs. These proteins may also have roles in the pathogenesis of CVD via a platelet/blood coagulation-based mechanism.


Asunto(s)
Enfermedades Cardiovasculares/genética , Granulinas , Volúmen Plaquetario Medio , Peroxidasa , Recuento de Plaquetas , Glicoproteínas de Membrana Plaquetaria , Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Antígeno CD146/genética , Antígeno CD146/metabolismo , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Diferenciación Celular , Femenino , Silenciador del Gen , Estudio de Asociación del Genoma Completo , Granulinas/genética , Granulinas/metabolismo , Humanos , Estudios Longitudinales , Masculino , Células Progenitoras de Megacariocitos , Megacariocitos/citología , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Peroxidasa/genética , Peroxidasa/metabolismo , Fenotipo , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Células Madre Pluripotentes , ARN Interferente Pequeño , Riesgo , Análisis de Secuencia de ARN
13.
J Pediatr Hematol Oncol ; 44(2): 47-53, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33735152

RESUMEN

Leukapheresis (LA) in pediatric leukemia is performed for leukostasis, a life-threatening emergency in the setting of extremely increased blast cell counts. The authors aimed to assess the epidemiology of pediatric leukemia who received LA. The authors reviewed US nationally representative admission records of patients less than 20 years of age in the Kids' Inpatient Database for the years 2000, 2003, 2006, 2009, 2012, and 2016. Incidence of new leukemia cases who underwent LA were calculated for the years 2009, 2012, and 2016. Cox and logistic regression analyses were performed to ascertain the risk factors for adverse outcomes. There were 526 admissions for pediatric patients with acute lymphoblastic leukemia (ALL) (n=328), acute myeloid leukemia (AML) (n=124), or chronic myeloid leukemia (CML) (n=74) who underwent LA over the study period. The incidence of leukemia cases that required LA was lower in 2016 than in 2009 or 2012 (1.4%, 2.2%, and 2.7%, respectively; P=0.001). In-hospital mortality was higher in AML than ALL (hzard ratio, 3.2; 95% confidence interval, 1.1-9.1). None with CML died during admission. This first population-based study of LA in pediatric leukemia showed a decreased utilization of LA over recent years. The higher inpatient mortality in AML, as compared with ALL or CML, warrant further investigations.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide Aguda , Leucostasis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Leucaféresis , Leucemia Mielógena Crónica BCR-ABL Positiva/complicaciones , Leucemia Mielógena Crónica BCR-ABL Positiva/epidemiología , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Estudios Retrospectivos
14.
PLoS Genet ; 15(12): e1008500, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869403

RESUMEN

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.


Asunto(s)
Negro o Afroamericano/genética , Hispánicos o Latinos/genética , Medicina de Precisión/métodos , Secuenciación Completa del Genoma/métodos , Globinas beta/genética , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Estados Unidos
15.
Am J Epidemiol ; 190(10): 1977-1992, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861317

RESUMEN

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948-2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms.


Asunto(s)
Estudios de Asociación Genética/métodos , Fenómica/métodos , Medicina de Precisión/métodos , Agregación de Datos , Humanos , Difusión de la Información , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Evaluación de Programas y Proyectos de Salud , Estados Unidos
16.
Blood ; 133(9): 967-977, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30642921

RESUMEN

Factor VII (FVII) is an important component of the coagulation cascade. Few genetic loci regulating FVII activity and/or levels have been discovered to date. We conducted a meta-analysis of 9 genome-wide association studies of plasma FVII levels (7 FVII activity and 2 FVII antigen) among 27 495 participants of European and African ancestry. Each study performed ancestry-specific association analyses. Inverse variance weighted meta-analysis was performed within each ancestry group and then combined for a trans-ancestry meta-analysis. Our primary analysis included the 7 studies that measured FVII activity, and a secondary analysis included all 9 studies. We provided functional genomic validation for newly identified significant loci by silencing candidate genes in a human liver cell line (HuH7) using small-interfering RNA and then measuring F7 messenger RNA and FVII protein expression. Lastly, we used meta-analysis results to perform Mendelian randomization analysis to estimate the causal effect of FVII activity on coronary artery disease, ischemic stroke (IS), and venous thromboembolism. We identified 2 novel (REEP3 and JAZF1-AS1) and 6 known loci associated with FVII activity, explaining 19.0% of the phenotypic variance. Adding FVII antigen data to the meta-analysis did not result in the discovery of further loci. Silencing REEP3 in HuH7 cells upregulated FVII, whereas silencing JAZF1 downregulated FVII. Mendelian randomization analyses suggest that FVII activity has a positive causal effect on the risk of IS. Variants at REEP3 and JAZF1 contribute to FVII activity by regulating F7 expression levels. FVII activity appears to contribute to the etiology of IS in the general population.


Asunto(s)
Isquemia Encefálica/etiología , Factor VII/genética , Estudio de Asociación del Genoma Completo , Proteínas de Transporte de Membrana/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/etiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Proteínas Co-Represoras , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Proteínas de Unión al ADN , Factor VII/metabolismo , Femenino , Estudios de Seguimiento , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Fenotipo , Pronóstico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Tromboembolia Venosa/etiología , Tromboembolia Venosa/metabolismo , Tromboembolia Venosa/patología
17.
Nature ; 518(7537): 102-6, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25487149

RESUMEN

Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


Asunto(s)
Alelos , Apolipoproteínas A/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Infarto del Miocardio/genética , Receptores de LDL/genética , Factores de Edad , Edad de Inicio , Apolipoproteína A-V , Estudios de Casos y Controles , LDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/genética , Femenino , Genética de Población , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Infarto del Miocardio/sangre , National Heart, Lung, and Blood Institute (U.S.) , Triglicéridos/sangre , Estados Unidos
18.
J Clin Apher ; 36(5): 750-758, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34252989

RESUMEN

INTRODUCTION: Indications for apheresis procedures are expanding; however, the evidence for many is low quality. A better understanding of apheresis patterns in the United States is needed to better plan prospective research studies. METHODS: Data from January 1, 2013, to September 30, 2015, were analyzed from the IBM MarketScan Research Databases of de-identified health insurance claims data of several million enrollees at all levels of care from large employers and health plans across the United States. Apheresis procedures were identified by International Classification of Diseases, Ninth version (ICD-9) and Current Procedure Terminology (CPT) codes. RESULTS: Combining inpatients and outpatients, 18 706 patients underwent 70 247 procedures. The patients were 52.7% female, 5.1% <18 years, and 55.9% inpatient, while the procedures were 49.5% female, 5.7% <18 years, and 19.8% inpatient. For each apheresis modality, the percent of patients treated and procedures performed, respectively, are plasmapheresis 36.4% and 42.5%, autologous harvest of stem cells 22.8% and 10.7%, plateletpheresis 11.1% and 3.5%, allogeneic harvest of stem cells 8.2% and 2.5%, photopheresis 5.4% and 24.4%, erythrocytapheresis 3.8% and 4.7%, leukopheresis 2.0% and 0.7%, immunoadsorption 1.4% and 0.4%, extracorporeal selective adsorption/filtration and plasma reinfusion 1.0% and 3.6%, and other 21.6% and 6.9%. A wide variety of diagnoses were treated; however, analysis of the diagnoses suggests the procedure codes may not always reflect an apheresis procedure. CONCLUSION: This study describes the landscape of apheresis in the United States, but may overestimate some procedures based on linked diagnosis codes. Direct measures of apheresis procedures are needed to plan future research studies.


Asunto(s)
Eliminación de Componentes Sanguíneos/métodos , Adulto , Femenino , Humanos , Masculino , Fotoféresis/métodos , Plasmaféresis/métodos , Plaquetoferesis/métodos , Pautas de la Práctica en Medicina , Estados Unidos
19.
Genet Epidemiol ; 43(4): 449-457, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30659681

RESUMEN

Although recent Genome-Wide Association Studies have identified novel associations for common variants, there has been no comprehensive exome-wide search for low-frequency variants that affect the risk of venous thromboembolism (VTE). We conducted a meta-analysis of 11 studies comprising 8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of African American ancestry genotyped with the Illumina HumanExome BeadChip. We used the seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single variant analysis, we limited our analysis to the 64,794 variants with at least 40 minor alleles across studies (minor allele frequency [MAF] ~0.08%). We confirmed associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After adjusting for multiple testing, we observed no novel significant findings in single variant or gene-based analysis. Given our sample size, we had greater than 80% power to detect minimum odds ratios greater than 1.5 and 1.8 for a single variant with MAF of 0.01 and 0.005, respectively. Larger studies and sequence data may be needed to identify novel low-frequency and rare variants associated with VTE risk.


Asunto(s)
Exoma/genética , Estudio de Asociación del Genoma Completo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis por Micromatrices/métodos , Tromboembolia Venosa/genética , Negro o Afroamericano/genética , Alelos , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Masculino , Análisis por Micromatrices/estadística & datos numéricos , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Tamaño de la Muestra , Tromboembolia Venosa/etnología
20.
Am J Hum Genet ; 100(4): 571-580, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28285768

RESUMEN

Identifying causal genetic variants and understanding their mechanisms of effect on traits remains a challenge in genome-wide association studies (GWASs). In particular, how genetic variants (i.e., trans-eQTLs) affect expression of remote genes (i.e., trans-eGenes) remains unknown. We hypothesized that some trans-eQTLs regulate expression of distant genes by altering the expression of nearby genes (cis-eGenes). Using published GWAS datasets with 39,165 single-nucleotide polymorphisms (SNPs) associated with 1,960 traits, we explored whole blood gene expression associations of trait-associated SNPs in 5,257 individuals from the Framingham Heart Study. We identified 2,350 trans-eQTLs (at p < 10-7); more than 80% of them were found to have cis-associated eGenes. Mediation testing suggested that for 35% of trans-eQTL-trans-eGene pairs in different chromosomes and 90% pairs in the same chromosome, the disease-associated SNP may alter expression of the trans-eGene via cis-eGene expression. In addition, we identified 13 trans-eQTL hotspots, affecting from ten to hundreds of genes, suggesting the existence of master genetic regulators. Using causal inference testing, we searched causal variants across eight cardiometabolic traits (BMI, systolic and diastolic blood pressure, LDL cholesterol, HDL cholesterol, total cholesterol, triglycerides, and fasting blood glucose) and identified several cis-eGenes (ALDH2 for systolic and diastolic blood pressure, MCM6 and DARS for total cholesterol, and TRIB1 for triglycerides) that were causal mediators for the corresponding traits, as well as examples of trans-mediators (TAGAP for LDL cholesterol). The finding of extensive evidence of genome-wide mediation effects suggests a critical role of cryptic gene regulation underlying many disease traits.


Asunto(s)
Enfermedades Cardiovasculares/genética , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/sangre , Estudios Clínicos como Asunto , Femenino , Perfilación de la Expresión Génica , Proyecto Genoma Humano , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Mapas de Interacción de Proteínas , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda