Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1395715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113790

RESUMEN

Introduction: Electrical stimulation has been used as a promising approach in bone repair for several decades. However, the therapeutic use is hampered by inconsistent results due to a lack of standardized application protocols. Recently, electrical stimulation has been considered for the improvement of the osseointegration of dental and endoprosthetic implants. Methods: In a pilot study, the suitability of a specifically developed device for electrical stimulation in situ was assessed. Here, the impact of alternating electric fields on implant osseointegration was tested in a gap model using New Zealand White Rabbits. Stimulation parameters were transmitted to the device via a radio transceiver, thus allowing for real-time monitoring and, if required, variations of stimulation parameters. The effect of electrical stimulation on implant osseointegration was quantified by the bone-implant contact (BIC) assessed by histomorphometric (2D) and µCT (3D) analysis. Results: Direct stimulation with an alternating electric potential of 150 mV and 20 Hz for three times a day (45 min per unit) resulted in improved osseointegration of the triangular titanium implants in the tibiae of the rabbits. The ratio of bone area in histomorphometry (2D analysis) and bone volume (3D analysis) around the implant were significantly increased after stimulation compared to the untreated controls at sacrifice 84 days after implantation. Conclusion: The developed experimental design of an electrical stimulation system, which was directly located in the defect zone of rabbit tibiae, provided feedback regarding the integrity of the stimulation device throughout an experiment and would allow variations in the stimulation parameters in future studies. Within this study, electrical stimulation resulted in enhanced implant osseointegration. However, direct electrical stimulation of bone tissue requires the definition of dose-response curves and optimal duration of treatment, which should be the subject of subsequent studies.

2.
Bone Joint Res ; 7(2): 187-195, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29682285

RESUMEN

OBJECTIVES: Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed. METHODS: Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated. RESULTS: Live and dead cell numbers were higher after 25 µm sine and 50 µm triangle micromotions compared with loaded controls. Collagen type I synthesis was downregulated in respective samples. The metabolic activity and osteocalcin expression level were higher in samples treated with 25 µm micromotions compared with the loaded controls. Furthermore, static loading and micromotions decreased the osteoprotegerin/receptor activator of NF-κB ligand ratio. CONCLUSION: Our system enables investigation of the behaviour of bone cells at the bone-implant interface under shear stress induced by micromotions. We could demonstrate that micromotions applied under static pressure conditions have a significant impact on the activity of osteoblasts seeded on collagen scaffolds. In future studies, higher mechanical stress will be applied and different implant surface structures will be considered.Cite this article: J. Ziebart, S. Fan, C. Schulze, P. W. Kämmerer, R. Bader, A. Jonitz-Heincke. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res 2018;7:187-195. DOI: 10.1302/2046-3758.72.BJR-2017-0228.R1.

4.
Sci Rep ; 6: 33747, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27671122

RESUMEN

The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair.

5.
Cell Biochem Biophys ; 70(2): 805-17, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24782061

RESUMEN

When large defects occur, bone regeneration can be supported by bone grafting and biophysical stimuli like electric and magnetic stimulation (EMS). Clinically established EMS modes are external coils and surgical implants like an electroinductive screw system, which combines a magnetic and electric field, e.g., for the treatment of avascular bone necrosis or pseudarthrosis. For optimization of this implant system, an in vitro test setup was designed to investigate effects of EMS on human osteoblasts on different 3D scaffolds (based on calcium phosphate and collagen). Prior to the cell experiments, numerical simulations of the setup, as well as experimental validation, via measurements of the electric parameters induced by EMS were conducted. Human osteoblasts (3 × 10(5) cells) were seeded onto the scaffolds and cultivated. After 24 h, screw implants (Stryker ASNIS III s-series) were centered in the scaffolds, and EMS was applied (3 × 45 min per day at 20 Hz) for 3 days. Cell viability and collagen type 1 (Col1) synthesis were determined subsequently. Numerical simulation and validation showed an adequate distribution of the electric field within the scaffolds. Experimental measurements of the electric potential revealed only minimal deviation from the simulation. Cell response to stimulation varied with scaffold material and mode of stimulation. EMS-stimulated cells exhibited a significant decrease of metabolic activity in particular on collagen scaffolds. In contrast, the Col1/metabolic activity ratio was significantly increased on collagen and non-sintered calcium phosphate scaffolds after 3 days. Exclusive magnetic stimulation showed similar but nonsignificant tendencies in metabolic activity and Col1 synthesis. The cell tests demonstrate that the new test setup is a valuable tool for in vitro testing and parameter optimization of the clinically used electroinductive screw system. It combines magnetic and electric stimulation, allowing in vitro investigations of its influence on human osteoblasts.


Asunto(s)
Estimulación Eléctrica/métodos , Fenómenos Magnéticos , Osteoblastos/citología , Técnicas de Cultivo de Célula , Diferenciación Celular , Separación Celular , Supervivencia Celular , Colágeno Tipo I/biosíntesis , Estimulación Eléctrica/instrumentación , Humanos , Osteoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda