Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Cell ; 68(1): 104-117.e6, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985501

RESUMEN

Eukaryotic gene transcription is regulated at many steps, including RNA polymerase II (Pol II) recruitment, transcription initiation, promoter-proximal Pol II pause release, and transcription termination; however, mechanisms regulating transcription during productive elongation remain poorly understood. Enhancers, which activate gene transcription, themselves undergo Pol II-mediated transcription, but our understanding of enhancer transcription and enhancer RNAs (eRNAs) remains incomplete. Here we show that transcription at intragenic enhancers interferes with and attenuates host gene transcription during productive elongation. While the extent of attenuation correlates positively with nascent eRNA expression, the act of intragenic enhancer transcription alone, but not eRNAs, explains the attenuation. Through CRISPR/Cas9-mediated deletions, we demonstrate a physiological role for intragenic enhancer-mediated transcription attenuation in cell fate determination. We propose that intragenic enhancers not only enhance transcription of one or more genes from a distance but also fine-tune transcription of their host gene through transcription interference, facilitating differential utilization of the same regulatory element for disparate functions.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , ARN Polimerasa II/genética , Elongación de la Transcripción Genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Cromatina/química , Cromatina/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Edición Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Regiones Promotoras Genéticas , ARN/genética , ARN/metabolismo , ARN Polimerasa II/metabolismo
2.
Genome Res ; 31(12): 2170-2184, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34667120

RESUMEN

Bivalent chromatin is characterized by the simultaneous presence of H3K4me3 and H3K27me3, histone modifications generally associated with transcriptionally active and repressed chromatin, respectively. Prevalent in embryonic stem cells (ESCs), bivalency is postulated to poise/prime lineage-controlling developmental genes for rapid activation during embryogenesis while maintaining a transcriptionally repressed state in the absence of activation cues; however, this hypothesis remains to be directly tested. Most gene promoters DNA hypermethylated in adult human cancers are bivalently marked in ESCs, and it was speculated that bivalency predisposes them for aberrant de novo DNA methylation and irreversible silencing in cancer, but evidence supporting this model is largely lacking. Here, we show that bivalent chromatin does not poise genes for rapid activation but protects promoters from de novo DNA methylation. Genome-wide studies in differentiating ESCs reveal that activation of bivalent genes is no more rapid than that of other transcriptionally silent genes, challenging the premise that H3K4me3 is instructive for transcription. H3K4me3 at bivalent promoters-a product of the underlying DNA sequence-persists in nearly all cell types irrespective of gene expression and confers protection from de novo DNA methylation. Bivalent genes in ESCs that are frequent targets of aberrant hypermethylation in cancer are particularly strongly associated with loss of H3K4me3/bivalency in cancer. Altogether, our findings suggest that bivalency protects reversibly repressed genes from irreversible silencing and that loss of H3K4me3 may make them more susceptible to aberrant DNA methylation in diseases such as cancer. Bivalency may thus represent a distinct regulatory mechanism for maintaining epigenetic plasticity.

3.
Nat Immunol ; 12(2): 129-36, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21186366

RESUMEN

The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.


Asunto(s)
Células Madre Adultas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Desarrollo Fetal , Células Madre Hematopoyéticas/metabolismo , Traslado Adoptivo , Células Madre Adultas/citología , Células Madre Adultas/inmunología , Células Madre Adultas/trasplante , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Células Madre Embrionarias/citología , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/trasplante , Femenino , Desarrollo Fetal/genética , Desarrollo Fetal/inmunología , Regulación del Desarrollo de la Expresión Génica/inmunología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas con Dominio LIM , Ratones , Ratones Noqueados , Ratones Transgénicos , Embarazo , Unión Proteica , Elementos Reguladores de la Transcripción/genética , Elementos Reguladores de la Transcripción/inmunología , Activación Transcripcional/genética , Activación Transcripcional/inmunología
4.
Mol Cell ; 55(5): 708-22, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25132174

RESUMEN

Cell type-specific master transcription factors (TFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that the ubiquitous CCAAT-binding NF-Y complex is required for the maintenance of embryonic stem cell (ESC) identity and is an essential component of the core pluripotency network. Genome-wide studies in ESCs and neurons reveal that NF-Y regulates not only genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with master TFs. Mechanistically, NF-Y's distinct DNA-binding mode promotes master/pioneer TF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a conceptually unique function for histone-fold domain (HFD) protein NF-Y in promoting chromatin accessibility and suggest that other HFD proteins with analogous structural and DNA-binding properties may function in similar ways.


Asunto(s)
Factor de Unión a CCAAT/fisiología , Cromatina/metabolismo , Histonas/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCAAT/metabolismo , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Ratones , Modelos Genéticos , Nucleosomas/química , Nucleosomas/metabolismo , Células Madre Pluripotentes , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
5.
Nucleic Acids Res ; 48(4): 1828-1842, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31853542

RESUMEN

The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved 'trans-omic' datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.


Asunto(s)
Desarrollo Embrionario/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Genoma/genética , Ratones
6.
Stem Cells ; 37(2): 202-215, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30376208

RESUMEN

Anterior-posterior (A-P) specification of the neural tube involves initial acquisition of anterior fate followed by the induction of posterior characteristics in the primitive anterior neuroectoderm. Several morphogens have been implicated in the regulation of A-P neural patterning; however, our understanding of the upstream regulators of these morphogens remains incomplete. Here, we show that the Krüppel-like zinc finger transcription factor GLI-Similar 3 (GLIS3) can direct differentiation of human embryonic stem cells (hESCs) into posterior neural progenitor cells in lieu of the default anterior pathway. Transcriptomic analyses reveal that this switch in cell fate is due to rapid activation of Wingless/Integrated (WNT) signaling pathway. Mechanistically, through genome-wide RNA-Seq, ChIP-Seq, and functional analyses, we show that GLIS3 binds to and directly regulates the transcription of several WNT genes, including the strong posteriorizing factor WNT3A, and that inhibition of WNT signaling is sufficient to abrogate GLIS3-induced posterior specification. Our findings suggest a potential role for GLIS3 in the regulation of A-P specification through direct transcriptional activation of WNT genes. Stem Cells 2018 Stem Cells 2019;37:202-215.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Embrionarias Humanas/citología , Células-Madre Neurales/citología , Proteínas Represoras/genética , Transactivadores/genética , Diferenciación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Activación Transcripcional , Vía de Señalización Wnt
7.
Immunity ; 35(2): 299-311, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21867929

RESUMEN

The transcription factor GATA3 plays an essential role during T cell development and T helper 2 (Th2) cell differentiation. To understand GATA3-mediated gene regulation, we identified genome-wide GATA3 binding sites in ten well-defined developmental and effector T lymphocyte lineages. In the thymus, GATA3 directly regulated many critical factors, including Th-POK, Notch1, and T cell receptor subunits. In the periphery, GATA3 induced a large number of Th2 cell-specific as well as Th2 cell-nonspecific genes, including several transcription factors. Our data also indicate that GATA3 regulates both active and repressive histone modifications of many target genes at their regulatory elements near GATA3 binding sites. Overall, although GATA3 binding exhibited both shared and cell-specific patterns among various T cell lineages, many genes were either positively or negatively regulated by GATA3 in a cell type-specific manner, suggesting that GATA3-mediated gene regulation depends strongly on cofactors existing in different T cells.


Asunto(s)
Factor de Transcripción GATA3/metabolismo , Proteínas Mutantes/metabolismo , Subgrupos de Linfocitos T/metabolismo , Células Th2/metabolismo , Animales , Linaje de la Célula/genética , Metilación de ADN , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/inmunología , Regulación de la Expresión Génica , Genoma/inmunología , Estudio de Asociación del Genoma Completo , Histonas/genética , Histonas/metabolismo , Linfopoyesis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Unión Proteica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología , Células Th2/inmunología , Células Th2/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
EMBO J ; 33(8): 878-89, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24596251

RESUMEN

mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3' processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al GTP Monoméricas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Células Madre/fisiología , Animales , Ratones , Modelos Biológicos , Poliadenilación
9.
Bioinformatics ; 32(2): 252-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26395771

RESUMEN

MOTIVATION: Protein phosphorylation is a post-translational modification that underlines various aspects of cellular signaling. A key step to reconstructing signaling networks involves identification of the set of all kinases and their substrates. Experimental characterization of kinase substrates is both expensive and time-consuming. To expedite the discovery of novel substrates, computational approaches based on kinase recognition sequence (motifs) from known substrates, protein structure, interaction and co-localization have been proposed. However, rarely do these methods take into account the dynamic responses of signaling cascades measured from in vivo cellular systems. Given that recent advances in mass spectrometry-based technologies make it possible to quantify phosphorylation on a proteome-wide scale, computational approaches that can integrate static features with dynamic phosphoproteome data would greatly facilitate the prediction of biologically relevant kinase-specific substrates. RESULTS: Here, we propose a positive-unlabeled ensemble learning approach that integrates dynamic phosphoproteomics data with static kinase recognition motifs to predict novel substrates for kinases of interest. We extended a positive-unlabeled learning technique for an ensemble model, which significantly improves prediction sensitivity on novel substrates of kinases while retaining high specificity. We evaluated the performance of the proposed model using simulation studies and subsequently applied it to predict novel substrates of key kinases relevant to insulin signaling. Our analyses show that static sequence motifs and dynamic phosphoproteomics data are complementary and that the proposed integrated model performs better than methods relying only on static information for accurate prediction of kinase-specific substrates. AVAILABILITY AND IMPLEMENTATION: Executable GUI tool, source code and documentation are freely available at https://github.com/PengyiYang/KSP-PUEL. CONTACT: pengyi.yang@nih.gov or jothi@mail.nih.gov SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Insulina/metabolismo , Espectrometría de Masas/métodos , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteómica/métodos , Bases de Datos de Proteínas , Humanos , Fosforilación , Transducción de Señal , Especificidad por Sustrato
10.
PLoS Genet ; 10(5): e1004331, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24831725

RESUMEN

The hepatic circadian clock plays a key role in the daily regulation of glucose metabolism, but the precise molecular mechanisms that coordinate these two biological processes are not fully understood. In this study, we identify a novel connection between the regulation of RORγ by the clock machinery and the diurnal regulation of glucose metabolic networks. We demonstrate that particularly at daytime, mice deficient in RORγ exhibit improved insulin sensitivity and glucose tolerance due to reduced hepatic gluconeogenesis. This is associated with a reduced peak expression of several glucose metabolic genes critical in the control of gluconeogenesis and glycolysis. Genome-wide cistromic profiling, promoter and mutation analysis support the concept that RORγ regulates the transcription of several glucose metabolic genes directly by binding ROREs in their promoter regulatory region. Similar observations were made in liver-specific RORγ-deficient mice suggesting that the changes in glucose homeostasis were directly related to the loss of hepatic RORγ expression. Altogether, our study shows that RORγ regulates several glucose metabolic genes downstream of the hepatic clock and identifies a novel metabolic function for RORγ in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. The inhibition of the activation of several metabolic gene promoters by an RORγ antagonist suggests that antagonists may provide a novel strategy in the management of metabolic diseases, including type 2 diabetes.


Asunto(s)
Ritmo Circadiano/genética , Glucosa/metabolismo , Resistencia a la Insulina , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/biosíntesis , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Humanos , Insulina/genética , Insulina/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/deficiencia , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Tretinoina/farmacología
11.
Proc Natl Acad Sci U S A ; 111(16): E1581-90, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711389

RESUMEN

Identification of genes associated with specific biological phenotypes is a fundamental step toward understanding the molecular basis underlying development and pathogenesis. Although RNAi-based high-throughput screens are routinely used for this task, false discovery and sensitivity remain a challenge. Here we describe a computational framework for systematic integration of published gene expression data to identify genes defining a phenotype of interest. We applied our approach to rank-order all genes based on their likelihood of determining ES cell (ESC) identity. RNAi-mediated loss-of-function experiments on top-ranked genes unearthed many novel determinants of ESC identity, thus validating the derived gene ranks to serve as a rich and valuable resource for those working to uncover novel ESC regulators. Underscoring the value of our gene ranks, functional studies of our top-hit Nucleolin (Ncl), abundant in stem and cancer cells, revealed Ncl's essential role in the maintenance of ESC homeostasis by shielding against differentiation-inducing redox imbalance-induced oxidative stress. Notably, we report a conceptually novel mechanism involving a Nucleolin-dependent Nanog-p53 bistable switch regulating the homeostatic balance between self-renewal and differentiation in ESCs. Our findings connect the dots on a previously unknown regulatory circuitry involving genes associated with traits in both ESCs and cancer and might have profound implications for understanding cell fate decisions in cancer stem cells. The proposed computational framework, by helping to prioritize and preselect candidate genes for tests using complex and expensive genetic screens, provides a powerful yet inexpensive means for identification of key cell identity genes.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Homeostasis/genética , Animales , Diferenciación Celular/genética , Proliferación Celular , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog , Estrés Oxidativo/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Nucleolina
12.
Proteomics ; 16(13): 1868-71, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27145998

RESUMEN

Mass spectrometry (MS)-based quantitative phosphoproteomics has become a key approach for proteome-wide profiling of phosphorylation in tissues and cells. Traditional experimental design often compares a single treatment with a control, whereas increasingly more experiments are designed to compare multiple treatments with respect to a control. To this end, the development of bioinformatic tools that can integrate multiple treatments and visualise kinases and substrates under combinatorial perturbations is vital for dissecting concordant and/or independent effects of each treatment. Here, we propose a hypothesis driven kinase perturbation analysis (KinasePA) to annotate and visualise kinases and their substrates that are perturbed by various combinatorial effects of treatments in phosphoproteomics experiments. We demonstrate the utility of KinasePA through its application to two large-scale phosphoproteomics datasets and show its effectiveness in dissecting kinases and substrates within signalling pathways driven by unique combinations of cellular stimuli and inhibitors. We implemented and incorporated KinasePA as part of the "directPA" R package available from the comprehensive R archive network (CRAN). Furthermore, KinasePA also has an interactive web interface that can be readily applied to annotate user provided phosphoproteomics data (http://kinasepa.pengyiyang.org).


Asunto(s)
Proteínas Quinasas/metabolismo , Proteómica/métodos , Línea Celular , Cromonas/farmacología , Bases de Datos de Proteínas , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Insulina/metabolismo , Morfolinas/farmacología , Naftiridinas/farmacología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
13.
PLoS Comput Biol ; 11(8): e1004403, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26252020

RESUMEN

Cell signaling underlies transcription/epigenetic control of a vast majority of cell-fate decisions. A key goal in cell signaling studies is to identify the set of kinases that underlie key signaling events. In a typical phosphoproteomics study, phosphorylation sites (substrates) of active kinases are quantified proteome-wide. By analyzing the activities of phosphorylation sites over a time-course, the temporal dynamics of signaling cascades can be elucidated. Since many substrates of a given kinase have similar temporal kinetics, clustering phosphorylation sites into distinctive clusters can facilitate identification of their respective kinases. Here we present a knowledge-based CLUster Evaluation (CLUE) approach for identifying the most informative partitioning of a given temporal phosphoproteomics data. Our approach utilizes prior knowledge, annotated kinase-substrate relationships mined from literature and curated databases, to first generate biologically meaningful partitioning of the phosphorylation sites and then determine key kinases associated with each cluster. We demonstrate the utility of the proposed approach on two time-series phosphoproteomics datasets and identify key kinases associated with human embryonic stem cell differentiation and insulin signaling pathway. The proposed approach will be a valuable resource in the identification and characterizing of signaling networks from phosphoproteomics data.


Asunto(s)
Comunicación Celular/fisiología , Bases del Conocimiento , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología , Diferenciación Celular/fisiología , Línea Celular , Bases de Datos de Proteínas , Células Madre Embrionarias , Humanos
14.
Trends Genet ; 28(5): 221-32, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22365642

RESUMEN

Complex regulatory networks orchestrate most cellular processes in biological systems. Genes in such networks are subject to expression noise, resulting in isogenic cell populations exhibiting cell-to-cell variation in protein levels. Increasing evidence suggests that cells have evolved regulatory strategies to limit, tolerate or amplify expression noise. In this context, fundamental questions arise: how can the architecture of gene regulatory networks generate, make use of or be constrained by expression noise? Here, we discuss the interplay between expression noise and gene regulatory network at different levels of organization, ranging from a single regulatory interaction to entire regulatory networks. We then consider how this interplay impacts a variety of phenomena, such as pathogenicity, disease, adaptation to changing environments, differential cell-fate outcome and incomplete or partial penetrance effects. Finally, we highlight recent technological developments that permit measurements at the single-cell level, and discuss directions for future research.


Asunto(s)
Fenómenos Fisiológicos Celulares/genética , Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Animales , Metabolismo Basal/genética , Redes Reguladoras de Genes/fisiología , Humanos , Modelos Biológicos
15.
Blood ; 121(22): 4575-85, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23610375

RESUMEN

Erythropoiesis is dependent on the lineage-specific transcription factors Gata1, Tal1, and Klf1. Several erythroid genes have been shown to require all 3 factors for their expression, suggesting that they function synergistically; however, there is little direct evidence for widespread cooperation. Gata1 and Tal1 can assemble within higher-order protein complexes (Ldb1 complexes) that include the adapter molecules Lmo2 and Ldb1. Ldb1 proteins are capable of coassociation, and long-range Ldb1-mediated oligomerization of enhancer- and promoter-bound Ldb1 complexes has been shown to be required for ß-globin gene expression. In this study, we generated a genomewide map of Ldb1 complex binding sites that revealed widespread binding at erythroid genes and at known erythroid enhancer elements. Ldb1 complex binding sites frequently colocalized with Klf1 binding sites and with consensus binding motifs for other erythroid transcription factors. Transcriptomic analysis demonstrated a strong correlation between Ldb1 complex binding and Ldb1 dependency for gene expression and identified a large cohort of genes coregulated by Ldb1 complexes and Klf1. Together, these results provide a foundation for defining the mechanism and scope of Ldb1 complex activity during erythropoiesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Eritroides/metabolismo , Factor de Transcripción GATA1/genética , Proteínas con Dominio LIM/genética , Transcripción Genética/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Células Eritroides/citología , Eritropoyesis/genética , Eritropoyesis/fisiología , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica/fisiología , Prueba de Complementación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas con Dominio LIM/metabolismo , Leucemia Eritroblástica Aguda , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda
16.
Nucleic Acids Res ; 41(15): 7286-301, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23775793

RESUMEN

The effects of diverse stresses on promoter selectivity and transcription regulation by the tumor suppressor p53 are poorly understood. We have taken a comprehensive approach to characterizing the human p53 network that includes p53 levels, binding, expression and chromatin changes under diverse stresses. Human osteosarcoma U2OS cells treated with anti-cancer drugs Doxorubicin (DXR) or Nutlin-3 (Nutlin) led to strikingly different p53 gene binding patterns based on chromatin immunoprecipitation with high-throughput sequencing experiments. Although two contiguous RRRCWWGYYY decamers is the consensus binding motif, p53 can bind a single decamer and function in vivo. Although the number of sites bound by p53 was six times greater for Nutlin than DXR, expression changes induced by Nutlin were much less dramatic compared with DXR. Unexpectedly, the solvent dimethylsulphoxide (DMSO) alone induced p53 binding to many sites common to DXR; however, this binding had no effect on target gene expression. Together, these data imply a two-stage mechanism for p53 transactivation where p53 binding only constitutes the first stage. Furthermore, both p53 binding and transactivation were associated with increased active histone modification histone H3 lysine 4 trimethylation. We discovered 149 putative new p53 target genes including several that are relevant to tumor suppression, revealing potential new targets for cancer therapy and expanding our understanding of the p53 regulatory network.


Asunto(s)
ADN de Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Regiones Promotoras Genéticas , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Secuencia de Consenso , ADN de Neoplasias/genética , Dimetilsulfóxido/farmacología , Doxorrubicina/farmacología , Redes Reguladoras de Genes , Genes p53 , Células HCT116 , Histonas/genética , Histonas/metabolismo , Humanos , Imidazoles/farmacología , Metilación , Motivos de Nucleótidos , Osteosarcoma/genética , Osteosarcoma/patología , Piperazinas/farmacología , Unión Proteica , Proteína p53 Supresora de Tumor/genética
17.
Nucleic Acids Res ; 40(17): 8519-35, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22753030

RESUMEN

In this study, we demonstrate that the lack of retinoic acid-related orphan receptor (ROR) γ or α expression in mice significantly reduced the peak expression level of Cry1, Bmal1, E4bp4, Rev-Erbα and Per2 in an ROR isotype- and tissue-selective manner without affecting the phase of their rhythmic expression. Analysis of RORγ/RORα double knockout mice indicated that in certain tissues RORγ and RORα exhibited a certain degree of redundancy in regulating clock gene expression. Reporter gene analysis showed that RORγ was able to induce reporter gene activity through the RORE-containing regulatory regions of Cry1, Bmal1, Rev-Erbα and E4bp4. Co-expression of Rev-Erbα or addition of a novel ROR antagonist repressed this activation. ChIP-Seq and ChIP-Quantitative real-time polymerase chain reaction (QPCR) analysis demonstrated that in vivo RORγ regulate these genes directly and in a Zeitgeber time (ZT)-dependent manner through these ROREs. This transcriptional activation by RORs was associated with changes in histone acetylation and chromatin accessibility. The rhythmic expression of RORγ1 by clock proteins may lead to the rhythmic expression of RORγ1 target genes. The presence of RORγ binding sites and its down-regulation in RORγ-/- liver suggest that the rhythmic expression of Avpr1a depends on RORγ consistent with the concept that RORγ1 provides a link between the clock machinery and its regulation of metabolic genes.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Línea Celular , Cromatina/química , Cromatina/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Criptocromos/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Elementos de Respuesta , Activación Transcripcional
18.
Nucleic Acids Res ; 40(8): 3364-77, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22210859

RESUMEN

The TET family of FE(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) promote DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which they further oxidize into 5-formylcytosine and 5-carboxylcytosine. Tet1 is robustly expressed in mouse embryonic stem cells (mESCs) and has been implicated in mESC maintenance. Here we demonstrate that, unlike genetic deletion, RNAi-mediated depletion of Tet1 in mESCs led to a significant reduction in 5hmC and loss of mESC identity. The differentiation phenotype due to Tet1 depletion positively correlated with the extent of 5hmC loss. Meta-analyses of genomic data sets suggested interaction between Tet1 and leukemia inhibitory factor (LIF) signaling. LIF signaling is known to promote self-renewal and pluripotency in mESCs partly by opposing MAPK/ERK-mediated differentiation. Withdrawal of LIF leads to differentiation of mESCs. We discovered that Tet1 depletion impaired LIF-dependent Stat3-mediated gene activation by affecting Stat3's ability to bind to its target sites on chromatin. Nanog overexpression or inhibition of MAPK/ERK signaling, both known to maintain mESCs in the absence of LIF, rescued Tet1 depletion, further supporting the dependence of LIF/Stat3 signaling on Tet1. These data support the conclusion that analysis of mESCs in the hours/days immediately following efficient Tet1 depletion reveals Tet1's normal physiological role in maintaining the pluripotent state that may be subject to homeostatic compensation in genetic models.


Asunto(s)
Citosina/análogos & derivados , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/enzimología , Factor Inhibidor de Leucemia/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Factor de Transcripción STAT3/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Células Cultivadas , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Proteína Homeótica Nanog , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Transducción de Señal , ADN Metiltransferasa 3B
19.
Blood ; 117(7): 2166-78, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21139080

RESUMEN

Maintaining a steady pool of self-renewing hematopoietic stem cells (HSCs) is critical for sustained production of multiple blood lineages. Many transcription factors and molecules involved in chromatin and epigenetic modifications have been found to be critical for HSC self-renewal and differentiation; however, their interplay is less understood. The transcription factor GA binding protein (GABP), consisting of DNA-binding subunit GABPα and transactivating subunit GABPß, is essential for lymphopoiesis as shown in our previous studies. Here we demonstrate cell-intrinsic, absolute dependence on GABPα for maintenance and differentiation of hematopoietic stem/progenitor cells. Through genome-wide mapping of GABPα binding and transcriptomic analysis of GABPα-deficient HSCs, we identified Zfx and Etv6 transcription factors and prosurvival Bcl-2 family members including Bcl-2, Bcl-X(L), and Mcl-1 as direct GABP target genes, underlying its pivotal role in HSC survival. GABP also directly regulates Foxo3 and Pten and hence sustains HSC quiescence. Furthermore, GABP activates transcription of DNA methyltransferases and histone acetylases including p300, contributing to regulation of HSC self-renewal and differentiation. These systematic analyses revealed a GABP-controlled gene regulatory module that programs multiple aspects of HSC biology. Our studies thus constitute a critical first step in decoding how transcription factors are orchestrated to regulate maintenance and multipotency of HSCs.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/deficiencia , Factor de Transcripción de la Proteína de Unión a GA/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Hematopoyesis/fisiología , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína ETS de Variante de Translocación 6
20.
Stem Cells ; 30(5): 910-22, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22367759

RESUMEN

Embryonic stem cell (ESC) identity and self-renewal is maintained by extrinsic signaling pathways and intrinsic gene regulatory networks. Here, we show that three members of the Ccr4-Not complex, Cnot1, Cnot2, and Cnot3, play critical roles in maintaining mouse and human ESC identity as a protein complex and inhibit differentiation into the extraembryonic lineages. Enriched in the inner cell mass of blastocysts, these Cnot genes are highly expressed in ESC and downregulated during differentiation. In mouse ESCs, Cnot1, Cnot2, and Cnot3 are important for maintenance in both normal conditions and the 2i/LIF medium that supports the ground state pluripotency. Genetic analysis indicated that they do not act through known self-renewal pathways or core transcription factors. Instead, they repress the expression of early trophectoderm (TE) transcription factors such as Cdx2. Importantly, these Cnot genes are also necessary for the maintenance of human ESCs, and silencing them mainly lead to TE and primitive endoderm differentiation. Together, our results indicate that Cnot1, Cnot2, and Cnot3 represent a novel component of the core self-renewal and pluripotency circuitry conserved in mouse and human ESCs.


Asunto(s)
Células Madre Embrionarias/metabolismo , Silenciador del Gen/fisiología , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/citología , Humanos , Ratones , Ratones Noqueados , Células Madre Pluripotentes/citología , Proteínas Represoras/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda