RESUMEN
Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.
RESUMEN
Recent studies suggest that amongst the GABAA receptor subtype heterogeneity, α2/α3 subunits of GABAA receptors mediate pain processing. Therefore, α2/α3-subtype selective GABAA receptor positive allosteric modulators (PAMs) may be candidate analgesics. Antinociceptive effects of α2/α3-subtype selective GABAA receptor PAMs have been reported, but the behavioral effects of these compounds have not been systematically evaluated. This study examined the behavioral effects of two α2/α3 subtype-selective GABAA receptor PAMs, KRM-II-81 and NS16085, in male rats. The antinociceptive effects of KRM-II-81 and NS16085 were examined using rat models of inflammatory (complete Freund's adjuvant) and neuropathic pain (chronic constriction injury). The effect of KRM-II-81 on affective pain was measured using the place escape/avoidance paradigm (PEAP). Rate-response of food-maintained operant responding, horizontal wire test, and the spontaneous alternation T-maze, were assessed to study the side-effect profiles of KRM-II-81 and NS16085. The benzodiazepine midazolam was used as a comparator in these studies. KRM-II-81 and NS16085 attenuated mechanical allodynia but not thermal hyperalgesia in both pain states, and their effects were attenuated by the benzodiazepine receptor antagonist flumazenil. KRM-II-81 attenuated affective pain-related behavior in the PEAP test. In the operant responding procedure and horizontal wire test, only midazolam produced significant effects at the dose that produced maximal antinociception. In the T-maze assay, only midazolam significantly decreased the percentage of alternation at an antinociceptive dose. Thus, KRM-II-81 and NS16085 but not midazolam selectively produced antinociceptive effects. Collectively, these data suggest that α2/α3-subtype selective GABAA PAMs could be a novel class of analgesics and warrant further investigation. Significance Statement This study demonstrates that α2/α3-subtype selective GABAA PAMs KRM-II-81 and NS16085 produce selective antinociceptive effects devoid of sedation, myorelaxation, cognitive impairment in two rat models of persistent pain. Unlikely classical benzodiazepines, this study supports the development of α2/α3-subtype selective GABAA PAMs as safe and novel analgesics for pain management.
RESUMEN
Sodium carbonate-promoted facile synthesis of 5-amino-1,2,4-thiadiazoles and 5-amino-1,2,4-selenadiazoles with elemental sulfur and selenium, respectively, was developed. This method was carried out with O2 in the air as the green oxidant, and it has several advantages, including low cost, low toxicity, and stable sulfur and selenium sources, good to excellent yields with water as the sole byproduct, simple operation, and a broad substrate scope. Preliminary mechanistic studies indicate that the formation of the 1,2,4-thiadiazole ring and the 1,2,4-selenadiazole ring undergoes different processes.
RESUMEN
Chiral perturbation theory and its unitarized versions have played an important role in our understanding of the low-energy strong interaction. Yet, so far, such studies typically deal exclusively with perturbative or nonperturbative channels. In this Letter, we report on the first global study of meson-baryon scattering up to one-loop order. It is shown that covariant baryon chiral perturbation theory, including its unitarization for the negative strangeness sector, can describe meson-baryon scattering data remarkably well. This provides a highly nontrivial check on the validity of this important low-energy effective field theory of QCD. We show that the K[over ¯]N related quantities can be better described in comparison with those of lower-order studies, and with reduced uncertainties due to the stringent constraints from the πN and KN phase shifts. In particular, we find that the two-pole structure of Λ(1405) persists up to one-loop order reinforcing the existence of two-pole structures in dynamically generated states.
RESUMEN
Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.
Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Trastornos Relacionados con Cocaína/metabolismo , Comportamiento de Búsqueda de Drogas , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G , Recurrencia , AutoadministraciónRESUMEN
Imidazoline receptors historically referred to a family of nonadrenergic binding sites that recognize compounds with an imidazoline moiety, although this has proven to be an oversimplification. For example, none of the proposed endogenous ligands for imidazoline receptors contain an imidazoline moiety but they are diverse in their chemical structure. Three receptor subtypes (I1, I2, and I3) have been proposed and the understanding of each has seen differing progress over the decades. I1 receptors partially mediate the central hypotensive effects of clonidine-like drugs. Moxonidine and rilmenidine have better therapeutic profiles (fewer side effects) than clonidine as antihypertensive drugs, thought to be due to their higher I1/α 2-adrenoceptor selectivity. Newer I1 receptor agonists such as LNP599 [3-chloro-2-methyl-phenyl)-(4-methyl-4,5-dihydro-3H-pyrrol-2-yl)-amine hydrochloride] have little to no activity on α 2-adrenoceptors and demonstrate promising therapeutic potential for hypertension and metabolic syndrome. I2 receptors associate with several distinct proteins, but the identities of these proteins remain elusive. I2 receptor agonists have demonstrated various centrally mediated effects including antinociception and neuroprotection. A new I2 receptor agonist, CR4056 [2-phenyl-6-(1H-imidazol-1yl) quinazoline], demonstrated clear analgesic activity in a recently completed phase II clinical trial and holds great promise as a novel I2 receptor-based first-in-class nonopioid analgesic. The understanding of I3 receptors is relatively limited. Existing data suggest that I3 receptors may represent a binding site at the Kir6.2-subtype ATP-sensitive potassium channels in pancreatic ß-cells and may be involved in insulin secretion. Despite the elusive nature of their molecular identities, recent progress on drug discovery targeting imidazoline receptors (I1 and I2) demonstrates the exciting potential of these compounds to elicit neuroprotection and to treat various disorders such as hypertension, metabolic syndrome, and chronic pain.
Asunto(s)
Receptores de Imidazolina/metabolismo , Imidazolinas/metabolismo , Imidazolinas/farmacología , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Clonidina/farmacología , Clonidina/uso terapéutico , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Ligandos , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Riboswitches are RNA molecules that can regulate gene expression which is affected by ligand-binding during cotranscriptional folding process. However, the role of ligand during the folding is still unclear. In this study, the pfl domain of Thermosinus carboxydivorans ZTP riboswitch was discussed. The ligand is molecule ZMP. We mainly analyzed the change of ZMP-free and ZMP-bound aptamer domain by the dynamics simulation method. Structural features by calculating their RMSD, RMSF, etc. are analyzed. The results demonstrate that the binding domain require the presence of ZMP to maintain a stable fold. It also suggested that ZMP specificly binding to ZTP can generate more hydrogen bonds in the binding domain. Through the calculation of binding free energy decomposition of each nucleotide, molecule ZMP was found to promote the recognition and binding process of ligands by controlling some special nucleotides in the process of ligand binding. At last, the dynamical correlation and components of conformational motions were both applied to explore the effect of molecule ZMP to ZTP riboswitch. In general, ZMP can effectively affect the motions of the pfl riboswitch and facilitate the folding process of the ZTP riboswitch.These results may provide some new ideas for structural changes in riboswitches and their cotranscriptional folding process.
Asunto(s)
Aptámeros de Nucleótidos , Riboswitch , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Firmicutes/genética , Ligandos , Simulación de Dinámica Molecular , Conformación de Ácido NucleicoRESUMEN
We construct a relativistic chiral nucleon-nucleon interaction up to the next-to-next-to-leading order in covariant baryon chiral perturbation theory. We show that a good description of the np phase shifts up to T_{lab}=200 MeV and even higher can be achieved with a χ[over Ë]^{2}/d.o.f. less than 1. Both the next-to-leading-order results and the next-to-next-to-leading-order results describe the phase shifts equally well up to T_{lab}=200 MeV, but for higher energies, the latter behaves better, showing satisfactory convergence. The relativistic chiral potential provides the most essential inputs for relativistic ab initio studies of nuclear structure and reactions, which has been in need for almost two decades.
RESUMEN
Opioid addiction remains a severe health problem. While substantial insights underlying opioid addiction have been yielded from neuron-centric studies, the contribution of non-neuronal mechanisms to opioid-related behavioral adaptations has begun to be recognized. Toll-like receptor 4 (TLR4), a pattern recognition receptor, has been widely suggested in opioid-related behaviors. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a kinase essential for TLR4 responses, However, the potential role of IRAK4 in opioid-related responses has not been examined. Here, we explored the role of IRAK4 in cue-induced opioid-seeking behavior in male rats. We found that morphine self-administration increased the phosphorylation level of IRAK4 in the nucleus accumbens (NAc) in rats; the IRAK4 signaling remained activated after morphine extinction and cue-induced reinstatement test. Both systemic and local inhibition of IRAK4 in the NAc core attenuated cue-induced morphine-seeking behavior without affecting the locomotor activity and cue-induced sucrose-seeking. In addition, inhibition of IRAK4 also reduced the cue-induced reinstatement of fentanyl-seeking. Our findings suggest an important role of IRAK4 in opioid relapse-like behaviors and provide novel evidence in the association between innate immunity and drug addiction.
Asunto(s)
Comportamiento de Búsqueda de Drogas , Quinasas Asociadas a Receptores de Interleucina-1 , Núcleo Accumbens , Trastornos Relacionados con Opioides , Analgésicos Opioides/farmacología , Animales , Señales (Psicología) , Extinción Psicológica , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Masculino , Morfina/farmacología , Proteínas Serina-Treonina Quinasas , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 4RESUMEN
A convenient, four-component reaction of o-phenylenediamines, isocyanides, and selenium powder catalyzed by a natural abundant copper/air (O2) catalyst system has been developed, providing a highly step and atom economical protocol for the synthesis of benzo[4,5]imidazo[2,1-c][1,2,4]selenadiazol-3-imine derivatives with excellent yields and good functional group tolerance. This method enables the construction of an imidazo[2,1-c][1,2,4]selenadiazol ring, one N-Se bond, one C-Se bond, and three C-N bonds in a single step with only water as the byproduct. Preliminary mechanistic studies imply that the copper/air (O2)-catalyzed cyclization proceeds via a selenium-centered radical intermediate.
RESUMEN
Nicotine addiction is a leading avoidable brain disorder globally. Although nicotine induces a modest reinforcing effect, which is important for the initial drug use, the transition from nicotine use to nicotine addiction involves the mechanisms responsible for the negative consequences of drug abstinence. Recent study suggested that trace amine-associated receptor 1 (TAAR1) is a promising pharmacological target for the modulation of positive reinforcing effects of nicotine. However, whether TAAR1 plays a part in the negative reinforcement of nicotine withdrawal remains to be determined. Here, using a long-access (LA) self-administration model, we investigated whether LA rats show increased nicotine intake and withdrawal symptoms in comparison with saline and ShA rats and then tested the effect of TAAR1 partial agonist RO5263397 on nicotine withdrawal effects. We found that rats from long-access group showed significant abstinence-induced anxiety-like behaviour, mechanic hypersensitivity, increased number of precipitated withdrawal signs and higher motivation for the drug, while rats from short-access did not differ from saline group. TAAR1 partial agonist RO5263397 significantly reduced the physical and motivational withdrawal effects of nicotine in LA rats, as reflected by increased time spent on the open arm in the elevated plus maze (EPM) test, normalized paw withdrawal threshold, decreased withdrawal signs and motivation to self-administer nicotine. This study indicates that activation of TAAR1 attenuates the negative-reinforcing effects of nicotine withdrawal and further suggests TAAR1 as a promising target to treat nicotine addiction.
Asunto(s)
Nicotina/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Tabaquismo/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Masculino , Oxazoles , Ratas , Refuerzo en Psicología , AutoadministraciónRESUMEN
Drug addiction is a chronic brain disease characterized by compulsive drug-seeking and drug-taking behaviors despite the major negative consequences. Current well-established neuronal underpinnings of drug addiction have promoted the substantial progress in understanding this disorder. However, non-neuronal mechanisms of drug addiction have long been underestimated. Fortunately, increased evidence indicates that neuroimmune system, especially Toll-like receptor 4 (TLR4) signaling, plays an important role in the different stages of drug addiction. Drugs like opioids, psychostimulants, and alcohol activate TLR4 signaling and enhance the proinflammatory response, which is associated with drug reward-related behaviors. While extensive studies have shown that inhibition of TLR4 attenuated drug-related responses, there are conflicting findings implicating that TLR4 signaling may not be essential to drug addiction. In this chapter, preclinical and clinical studies will be discussed to further evaluate whether TLR4-based neuroimmune pharmacotherapy can be used to treat drug addiction. Furthermore, the possible mechanisms underlying the effects of TLR4 inhibition in modulating drug-related behaviors will also be discussed.
Asunto(s)
Comportamiento de Búsqueda de Drogas , Trastornos Relacionados con Sustancias , Receptor Toll-Like 4 , Analgésicos Opioides/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Etanol/farmacología , Humanos , Transducción de Señal , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Sustancias/genética , Receptor Toll-Like 4/antagonistas & inhibidoresRESUMEN
Oxypeucedanin, a furanocoumarin extracted from many traditional Chinese herbal medicines, has a variety of pharmacological effects. However, the independent pharmacokinetic characteristics and bioavailability of this compound remains elusive. In this study, a rapid, sensitive, and selective method using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) was developed for evaluating the intravenous and oral pharmacokinetics of oxypeucedanin. After intravenous administration of oxypeucedanin (2.5, 5, and 10 mg/kg), and intragastric administration of oxypeucedanin (20 mg/kg), blood samples were collected periodically from the tail vein. The plasma concentration-time curves were plotted, and the pharmacokinetic parameters were calculated using a non-compartmental model analysis. After intravenous administration of oxypeucedanin (single dosing at 2.5, 5, and 10 mg/kg) to rats, the pharmacokinetics fit the linear kinetics characteristics, which showed that some parameters including average elimination half-life (T1/2Z of 0.61~0.66 h), mean residence time (MRT of 0.62~0.80 h), apparent volume of distribution (VZ of 4.98~7.50 L/kg), and systemic clearance (CLZ of 5.64~8.55 L/kg/h) are dose-independent and the area under concentration-time curve (AUC) increased in a dose-proportional manner. Single oral administration of oxypeucedanin (20 mg/kg) showed poor and slow absorption with the mean time to reach the peak concentration (Tmax) of 3.38 h, MRT of 5.86 h, T1/2Z of 2.94 h, and a mean absolute bioavailability of 10.26% in rats. These results provide critical information for a better understanding of the pharmacological effect of oxypeucedanin, which will facilitate its research and development.
Asunto(s)
Furocumarinas , Espectrometría de Masas en Tándem , Administración Intravenosa , Administración Oral , Animales , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión , Ratas , Espectrometría de Masas en Tándem/métodosRESUMEN
Direct generation of ultrashort few-optical-cycle pulses in various wavelength regions has attracted great attention in recent decades. In this paper, generation of less than five-optical-cycle pulses from a Kerr-lens mode-locked ${\rm Yb}{:}{\rm CaYAlO}_4$ laser is demonstrated. Pumped by a 976 nm fiber laser, stable near-Fourier-transform-limited ultrashort soliton pulses centered around 1080 nm with a repetition rate of ${\sim}{113.7}\;{\rm MHz}$ were obtained. The obtained pulses have a pulse duration as short as 17 fs if a ${{\rm Sech}^2}$-shaped pulse profile is assumed, corresponding to about 4.68 optical cycles. To the best of our knowledge, this is the shortest pulse directly generated from mode-locked rare-earth-doped solid-state oscillators.
RESUMEN
Alzheimer's disease (AD) process is characterized classically by two hallmark pathologies: ß-amyloid (Aß) plaque deposition and neurofibrillary tangles of hyperphosphorylated tau. Aß peptides play an important role in AD, but despite much effort the molecular mechanisms of how Aß contributes to AD remain unclear. The present study evaluated the effects of the active components of Epimedium, Astragalus and Radix Puerariae induced HAMP on key enzymes in the hydrolysis of APP in HT22 cells. The active components of Epimedium, Astragalus and Radix Puerariae could effectively up-regulate the expression of HAMP, alleviate the iron overload in the brain tissues of mice, significantly improve the learning and memory ability of AD, down-regulate the expression of Aß and reduce the deposition of SP in an APPswe/PS1ΔE9 transgenic mouse model of AD. HAMP and Aß25-35 induced HT22 cells are used as AD cell models in this study to investigate the effect of the compound consisting of the effective components of Epimedium, Astragalus and Pueraria on the key enzymes in the hydrolysis of APP. After the administration of traditional Chinese medicine (TCM), the expression levels of ADAM10 and ADAM17 were increased while the expression level of BACE1 decreased. This indicates that TCM can promote the expression level of ADAM10 and ADAM17, inhibit the expression level of BACE1, thus further inhibiting the production of amyloid protein and reducing the production of Aß and SP. Compared with RNAi group, the expression level of ADAM10 and ADAM17 in Aß + RNAi group was decreased while the expression level of BACE1 increased. Compared with the Aß + RNAi group the expression level of ADAM10 and ADAM17 in the Aß + RNAi + TCM group was increased while the expression level of BACE1 was decreased. The present study indicated the effects of the active components of Epimedium, Astragalus and Radix Puerariae may alleviate AD by up-regulating the expression of HAMP, thus reducing brain iron overload, promoting the expression of ADAM10 and ADAM17, inhibiting the expression of BACE1, and reducing the deposition of Aß.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Medicamentos Herbarios Chinos/farmacología , Hepcidinas/metabolismo , Fármacos Neuroprotectores/farmacología , Proteolisis/efectos de los fármacos , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Fragmentos de Péptidos/farmacología , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Benzodiazepines bind to and act on α1-3 and α5-containing GABAA receptors. Previous studies suggest that different GABAA receptor α-subtypes mediate the various behavioral effects of benzodiazepines, which raises the possibility of combining benzodiazepines with subtype-selective GABAA receptor antagonists to improve the therapeutic profiles of benzodiazepines. This study examined the GABAA receptor subtype mediation of the tolerance to midazolam-induced antinociception in rats. Midazolam (3.2 mg/kg) significantly reduced the locomotion in rats which was prevented by the selective α1-preferring GABAA receptor antagonist ß-carboline-3-carboxylate-t-butyl ester (ßCCt) (3.2 mg/kg). Midazolam increased the paw withdrawal threshold as tested by the von Frey filament assay in the complete Freund's adjuvant-induced inflammatory pain model in rats, and this effect was not altered by ßCCt or another α1-preferring GABAA receptor antagonist 3-propoxy-ß-carboline hydrochloride (3PBC). Repeated treatment with midazolam in combination with vehicle, ßCCt or 3PBC (twice daily) for 7 days led to a progressive increase of the ED50 values in the midazolam- and vehicle-treated rats, but not in other rats, suggesting the development of tolerance to midazolam but not to the combination of midazolam with α1-preferring GABAA receptor antagonists. These results suggest the essential role of the α1-subtype of GABAA receptors in mediating the development of tolerance to midazolam-induced antinociceptive effects and raise the possibility of increasing therapeutic profiles of benzodiazepines by selectively blocking specific α-subtypes of GABAA receptors.
Asunto(s)
Analgésicos/farmacología , Benzodiazepinas/farmacología , Carbolinas/farmacología , Tolerancia a Medicamentos/fisiología , Midazolam/farmacología , Animales , Quimioterapia Combinada/métodos , Moduladores del GABA , Antagonistas de Receptores de GABA-A/farmacología , Umbral del Dolor/efectos de los fármacos , Vehículos Farmacéuticos/farmacología , Ratas , Receptores de GABA-A/metabolismoRESUMEN
Coccinella septempunctata (ladybird) is one of the foremost natural predators that feed on aphids. Thus, C. septempunctata serves as an effective biological control agent in integrated pest management (IPM) programs. To supplement the activity of biological control agents, IPM programs often incorporate chemical pesticides to bolster crop protection. To evaluate the effects of a potent insecticide, tolfenpyrad, on C. septempunctata, we tested the sublethal effects of tolfenpyrad on all developmental stages of the life cycle of C. septempunctata and its effects on the next generation. For sublethal testing of the parent generation, the LR50 of tolfenpyrad for C. septempunctata was determined to range from 1.04 to 8.43 g a.i. /hm2 within a set exposure period, while the hazard quotient (HQ) values were above our threshold value of 2 during the entire observation period. These data indicated a potential toxicity risk from tolfenpyrad exposure. The no observed effect application rates (NOERs) of tolfenpyrad on parents (F0) were determined for survival (0.485 g a.i. /hm2), developmental time of pupation (0.242 g a.i. /hm2), and fecundity (0.485 g a.i. /hm2). Application of sublethal doses to unexposed progeny (F1) of exposed parents, prolonged the L1 (1st instar of larvae) and L2 (2nd instar of larvae) stage, while the total longevity, intrinsic rate of increase (r), finite rate of increase (γ), net reproductive rate (R0), and mean generation time (T) were significantly reduced. These results demonstrated the negative influence of sublethal concentrations of tolfenpyrad on C. septempunctata and its persistent effects on subsequent generations.
Asunto(s)
Escarabajos/efectos de los fármacos , Insecticidas/toxicidad , Pirazoles/toxicidad , Animales , Escarabajos/fisiología , Femenino , Fertilidad/efectos de los fármacos , Larva/efectos de los fármacos , Larva/fisiología , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Control de Plagas , Reproducción/efectos de los fármacosRESUMEN
The claustrum connects with a broad range of cortical areas including the prefrontal cortex (PFC). However, the function of the claustrum (CLA) and its neural projections remains largely unknown. Here, we elucidated the role of the neural projections from the CLA to the PFC in regulating impulsivity in male rats. We first identified the CLA-PFC pathway by retrograde tracer and virus expression. By using immunofluorescent staining of the c-Fos-positive neurons, we showed that chemogenetic activation and inhibition of the CLA-PFC pathway reduced and increased overall activity of the PFC, respectively. In the 5-choice serial reaction time task (5-CSRTT), we found that chemogenetic activation and inhibition of the CLA-PFC pathway increased and reduced the impulsive-like behavior (i.e., premature responses), respectively. Furthermore, chemogenetic inhibition of the CLA-PFC pathway prevented methamphetamine-induced impulsivity, without affecting methamphetamine-induced hyperactivity. In contrast to the role of CLA-PFC pathway in selectively regulating impulsivity, activation of the claustrum disrupted attention in the 5-CSRTT. These results indicate that the CLA-PFC pathway is essential for impulsivity. This study may shed light on the understanding of impulsivity-related disorders such as drug addiction.SIGNIFICANCE STATEMENT The claustrum is one of the most mysterious brain regions. Although extensive anatomical studies demonstrated that the claustrum connects with many cortical areas, the function of the neural projections between the claustrum and cortical areas remain largely unknown. Here, we showed that the neural projections from the claustrum to the prefrontal cortex regulates impulsivity by using the designer drugs (DREADDs)-based chemogenetic tools. Interestingly, the claustrum-prefrontal cortex pathway also regulates methamphetamine-induced impulsivity, suggesting a critical role of this neural pathway in regulating impulsivity-related disorders such as drug addiction. Our results provided preclinical evidence that the claustrum-prefrontal cortex regulates impulsivity. The claustrum-prefrontal cortex pathway may be a novel target for the treatment of impulsivity-related brain disorders.
Asunto(s)
Conducta de Elección/fisiología , Claustro/fisiología , Conducta Impulsiva/fisiología , Corteza Prefrontal/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Conducta de Elección/efectos de los fármacos , Claustro/efectos de los fármacos , Conducta Impulsiva/efectos de los fármacos , Masculino , Metanfetamina/farmacología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiologíaRESUMEN
Trace amine-associated receptor 1 is one of the best-characterized receptors of trace amines. Growing evidence shows that TAAR1 negatively regulates the monoaminergic activity, including dopamine transmission in the mesocorticolimbic system. Neurochemical assays demonstrated that selective TAAR1 full and partial agonists were effective to prevent psychostimulants-induced dopamine transmission in vitro and in vivo. In the last decade, many preclinical models of psychostimulant addiction such as drug-induced behavioral sensitization, drug-induced conditioned place preference, drug self-administration, drug discrimination, and relapse models were used to assess the effects of TAAR1 agonists on psychostimulants' behavioral effects. In general, activation of TAAR1 attenuated while knockout of TAAR1 potentiated psychostimulant abuse-related behaviors. Here, we review the advances in TAAR1 and its agonists in modulating psychostimulant addiction. We discuss the similarities and differences between the neurochemical and behavioral effects of TAAR1 full and partial agonists. We also discuss several concerns including the abuse liability, sleep reduction, and species-dependent effects that might affect the successful translation of TAAR1 agonists from preclinical studies to clinical application. In conclusion, although further investigations are in need to address certain concerns and the underlying neural mechanisms, TAAR1 agonists appear to be a promising pharmacotherapy to treat psychostimulant addiction and prevent relapse.
Asunto(s)
Estimulantes del Sistema Nervioso Central/metabolismo , Psicotrópicos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Conducta Adictiva/metabolismo , Conducta Adictiva/prevención & control , Estimulantes del Sistema Nervioso Central/farmacología , Dopamina/metabolismo , Humanos , Psicotrópicos/farmacologíaRESUMEN
Drug addiction is an aberrant memory that shares the same memory processes as other memories. Brief exposure to drug-associated cues could result in reconsolidation, a hypothetical process during which original memory could be updated. In contrast, longer exposure times to drug-associated cues could trigger extinction, a process that decreases the conditioned responding. In this review, we discuss the pharmacological and non-pharmacological manipulations on the reconsolidation and extinction that could be used to interfere with drug reward memories. Pharmacological agents such as ß-adrenergic receptor antagonist propranolol can interfere with reconsolidation to disrupt drug reward memory. Pharmacological agents such as the NMDA receptor glycine site agonists d-cycloserine and d-serine can facilitate extinction and then attenuate the expression of drug reward memory. Besides pharmacological interventions, drug-free behavioral approaches by utilizing the reconsolidation and extinction, such as 'post-retrieval extinction' and 'UCS-retrieval extinction', are also effective to erase or inhibit the recall of drug reward memory. Taken together, pharmacological modulation and non-pharmacological modulation of reconsolidation and extinction are promising approaches to regulate drug reward memory and prevent relapse.