Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175863

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, has spread around the world with more than 700 million cases and 6.8 million deaths. Various variants of concern (VoC) have emerged due to mutations and recombination and concurrent selection for increased viral fitness and immune evasion. The viral protein that primarily determines the pathogenicity, infectivity, and transmissibility is the Spike protein. To analyze the specific impact of variant Spike proteins on infection dynamics, we constructed SARS-CoV-2 with a uniform B.1 backbone but with alternative Spike proteins. In addition, ORF6 was replaced by EYFP as a biological safety measure, and for use of this well-established reporter. We show that namely the delta variant Spike proteins cause a distinct phenotype from the wild type (B.1, D614G) and other variants of concern. Furthermore, we demonstrate that the omicron BA.1 Spike results in lower viral loads and a less efficient spread in vitro. Finally, we utilized viruses with the two different reporters EYFP and mCherry to establish a competitive growth assay, demonstrating that most but not all Spike variant viruses were able to outcompete wild type SARS-CoV-2 B.1.


Asunto(s)
COVID-19 , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
2.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638527

RESUMEN

The ongoing pandemic coronavirus (CoV) disease 2019 (COVID-19) by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has already caused substantial morbidity, mortality, and economic devastation. Reverse genetic approaches to generate recombinant viruses are a powerful tool to characterize and understand newly emerging viruses. To contribute to the global efforts for countermeasures to control the spread of SARS-CoV-2, we developed a passage-free SARS-CoV-2 clone based on a bacterial artificial chromosome (BAC). Moreover, using a Lambda-based Red recombination, we successfully generated different reporter and marker viruses, which replicated similar to a clinical isolate in a cell culture. Moreover, we designed a full-length reporter virus encoding an additional artificial open reading frame with wild-type-like replication features. The virus-encoded reporters were successfully applied to ease antiviral testing in cell culture models. Furthermore, we designed a new marker virus encoding 3xFLAG-tagged nucleocapsid that allows the detection of incoming viral particles and, in combination with bio-orthogonal labeling for the visualization of viral RNA synthesis via click chemistry, the spatiotemporal tracking of viral replication on the single-cell level. In summary, by applying BAC-based Red recombination, we developed a powerful, reliable, and convenient platform that will facilitate studies answering numerous questions concerning the biology of SARS-CoV-2.


Asunto(s)
COVID-19/virología , Clonación Molecular/métodos , Genoma Viral , SARS-CoV-2/genética , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Mutagénesis , Plásmidos/genética , Recombinación Genética , Células Vero
3.
PLoS Pathog ; 14(2): e1006912, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432452

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus associated with Kaposi's sarcoma and two B-cell malignancies. The rhesus monkey rhadinovirus (RRV) is a virus of nonhuman primates that is closely related to KSHV. Eph family receptor tyrosine kinases (Ephs) are cellular receptors for the gH/gL glycoprotein complexes of both KSHV and RRV. Through sequence analysis and mutational screens, we identified conserved residues in the N-terminal domain of KSHV and RRV glycoprotein H that are critical for Eph-binding in vitro. Homology-based structural predictions of the KSHV and RRV gH/gL complexes based on the Epstein-Barr-Virus gH/gL crystal structure located these amino acids in a beta-hairpin on gH, which is likely stabilized by gL and is optimally positioned for protein-protein interactions. Guided by these predictions, we generated recombinant RRV and KSHV strains mutated in the conserved motif as well as an RRV gL null mutant. Inhibition experiments using these mutants confirmed that disruption of the identified Eph-interaction motif or of gL expression resulted in complete detargeting from Ephs. However, all mutants were infectious on all cell types tested, exhibiting normal attachment but a reduction in infectivity of up to one log order of magnitude. While Eph-binding-negative RRV mutants were replication-competent on fibroblasts, their infectivity was comparatively more reduced on endothelial cells with a substantial subpopulation of endothelial cells remaining resistant to infection. Together, this provides evidence for a cell type-specific use of Ephs by RRV. Furthermore, our results demonstrate that gL is dispensable for infection by RRV. Its deletion caused a reduction in infectivity similar to that observed after mutation of Eph-binding residues in gH. Our findings would be compatible with an ability of KSHV and RRV to use other, less efficient entry mediators in lieu of Ephs, although these host factors may not be uniformly expressed by all cells.


Asunto(s)
Herpesvirus Humano 8/metabolismo , Receptores de la Familia Eph/química , Receptores de la Familia Eph/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Células A549 , Secuencia de Aminoácidos , Animales , Células Cultivadas , Secuencia Conservada , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Macaca mulatta , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Receptores de la Familia Eph/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/genética
4.
J Virol ; 90(17): 8013-28, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27356898

RESUMEN

UNLABELLED: Nuclear domain 10 (ND10) components restrict herpesviral infection, and herpesviruses antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. The rhesus monkey rhadinovirus (RRV) shares many key biological features with the closely related Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) and readily infects cells of both human and rhesus monkey origin. We used the clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) technique to generate knockout (ko) cells for each of the four ND10 components, PML, SP100, DAXX, and ATRX. These ko cells were analyzed with regard to permissiveness for RRV infection. In addition, we analyzed the fate of the individual ND10 components in infected cells by immunofluorescence and Western blotting. Knockout of the ND10 component DAXX markedly increased RRV infection, while knockout of PML or SP100 had a less pronounced effect. In line with these observations, RRV infection resulted in rapid degradation of SP100, followed by degradation of PML and the loss of ND10 structures, whereas the protein levels of ATRX and DAXX remained constant. Notably, inhibition of the proteasome but not inhibition of de novo gene expression prevented the loss of SP100 and PML in cells that did not support lytic replication, compatible with proteasomal degradation of these ND10 components through the action of a viral tegument protein. Expression of the RRV FGARAT homolog ORF75 was sufficient to effect the loss of SP100 and PML in transfected or transduced cells, implicating ORF75 as the viral effector protein. IMPORTANCE: Our findings highlight the antiviral role of ND10 and its individual components and further establish the viral FGARAT homologs of the gammaherpesviruses to be important viral effectors that counteract ND10-instituted intrinsic immunity. Surprisingly, even closely related viruses like KSHV and RRV evolved to use different strategies to evade ND10-mediated restriction. RRV first targets SP100 for degradation and then targets PML with a delayed kinetic, a strategy which clearly differs from that of other gammaherpesviruses. Despite efficient degradation of these two major ND10 components, RRV is still restricted by DAXX, another abundant ND10 component, as evidenced by a marked increase in RRV infection and replication upon knockout of DAXX. Taken together, our findings substantiate PML, SP100, and DAXX as key antiviral proteins, in that the first two are targeted for degradation by RRV and the last one still potently restricts replication of RRV.


Asunto(s)
Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Interacciones Huésped-Patógeno , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Rhadinovirus/patogenicidad , Proteínas Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Western Blotting , Línea Celular , Proteínas Co-Represoras , ADN Helicasas/metabolismo , Humanos , Microscopía Fluorescente , Chaperonas Moleculares , Proteolisis , Proteína Nuclear Ligada al Cromosoma X
5.
PLoS Pathog ; 10(1): e1003863, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453968

RESUMEN

Nuclear domain 10 (ND10) components are restriction factors that inhibit herpesviral replication. Effector proteins of different herpesviruses can antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. We investigated the interplay of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) infection and cellular defense by nuclear domain 10 (ND10) components. Knock-down experiments in primary human cells show that KSHV-infection is restricted by the ND10 components PML and Sp100, but not by ATRX. After KSHV infection, ATRX is efficiently depleted and Daxx is dispersed from ND10, indicating that these two ND10 components can be antagonized by KSHV. We then identified the ORF75 tegument protein of KSHV as the viral factor that induces the disappearance of ATRX and relocalization of Daxx. ORF75 belongs to a viral protein family (viral FGARATs) that has homologous proteins in all gamma-herpesviruses. Isolated expression of ORF75 in primary cells induces a relocalization of PML and dispersal of Sp100, indicating that this viral effector protein is able to influence multiple ND10 components. Moreover, by constructing a KSHV mutant harboring a stop codon at the beginning of ORF75, we could demonstrate that ORF75 is absolutely essential for viral replication and the initiation of viral immediate-early gene expression. Using recombinant viruses either carrying Flag- or YFP-tagged variants of ORF75, we could further corroborate the role of ORF75 in the antagonization of ND10-mediated intrinsic immunity, and show that it is independent of the PML antagonist vIRF3. Members of the viral FGARAT family target different ND10 components, suggesting that the ND10 targets of viral FGARAT proteins have diversified during evolution. We assume that overcoming ND10 intrinsic defense constitutes a critical event in the replication of all herpesviruses; on the other hand, restriction of herpesviral replication by ND10 components may also promote latency as the default outcome of infection.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Herpesvirus Humano 8/fisiología , Inmunidad Innata , Proteínas Nucleares/inmunología , Proteínas Estructurales Virales/inmunología , Replicación Viral/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Células Cultivadas , Proteínas Co-Represoras , Codón de Terminación/genética , Codón de Terminación/inmunología , ADN Helicasas/genética , ADN Helicasas/inmunología , Técnicas de Silenciamiento del Gen , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/patología , Humanos , Masculino , Chaperonas Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Estructurales Virales/genética , Proteína Nuclear Ligada al Cromosoma X
6.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468685

RESUMEN

The HIV-1 Rev protein is a nuclear export factor for unspliced and incompletely spliced HIV-1 RNAs. Without Rev, these intron-retaining RNAs are trapped in the nucleus. A genome-wide screen identified nine proteins of the spliceosome, which all enhanced expression from the HIV-1 unspliced RNA after CRISPR/Cas knockdown. Depletion of DHX38, WDR70, and four proteins of the Prp19-associated complex (ISY1, BUD31, XAB2, and CRNKL1) resulted in a more than 20-fold enhancement of unspliced HIV-1 RNA levels in the cytoplasm. Targeting of CRNKL1, DHX38, and BUD31 affected nuclear export efficiencies of the HIV-1 unspliced RNA to a much larger extent than splicing. Transcriptomic analyses further revealed that CRNKL1 also suppresses cytoplasmic levels of a subset of cellular mRNAs, including some with selectively retained introns. Thus, CRNKL1-dependent nuclear retention is a novel cellular mechanism for the regulation of cytoplasmic levels of intron-retaining HIV-1 mRNAs, which HIV-1 may have harnessed to direct its complex splicing pattern.IMPORTANCE To regulate its complex splicing pattern, HIV-1 uses the adaptor protein Rev to shuttle unspliced or partially spliced mRNA from the nucleus to the cytoplasm. In the absence of Rev, these RNAs are retained in the nucleus, but it is unclear why. Here we identify cellular proteins whose depletion enhances cytoplasmic levels of the HIV-1 unspliced RNA. Depletion of one of them, CRNKL1, also increases cytoplasmic levels of a subset of intron-retaining cellular mRNA, suggesting that CRNKL1-dependent nuclear retention may be a basic cellular mechanism exploited by HIV-1.


Asunto(s)
VIH-1/genética , Proteínas Nucleares/genética , Empalme del ARN , ARN Mensajero/genética , ARN Viral/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Núcleo Celular/genética , Núcleo Celular/virología , Citosol/metabolismo , Citosol/virología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Exones , Redes Reguladoras de Genes , VIH-1/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Intrones , Células Jurkat , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Transcriptoma , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Pathogens ; 10(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578109

RESUMEN

Currently, human infections with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are accelerating the ongoing spread of the pandemic. Several innovative types of vaccines have already been developed, whereas effective options of antiviral treatments still await a scientific implementation. The development of novel anti-SARS-CoV-2 drug candidates demands skillful strategies and analysis systems. Promising results have been achieved with first generation direct-acting antivirals targeting the viral polymerase RdRp or the protease 3CLpro. Such recently approved or investigational drugs like remdesivir and GC376 represent a basis for further development and optimization. Here, we establish a multi-readout assay (MRA) system that enables the antiviral assessment and mechanistic characterization of novel test compounds, drug repurposing and combination treatments. Our SARS-CoV-2-specific MRA combines the quantitative measurement of several parameters of virus infection, such as the intracellular production of proteins and genomes, enzymatic activities and virion release, as well as the use of reporter systems. In this regard, the antiviral efficacy of remdesivir and GC376 has been investigated in human Caco-2 cells. The readouts included the use of spike- and double-strand RNA-specific monoclonal antibodies for in-cell fluorescence imaging, a newly generated recombinant SARS-CoV-2 reporter virus d6YFP, the novel 3CLpro-based FRET CFP::YFP and the previously reported FlipGFP reporter assays, as well as viral genome-specific RT-qPCR. The data produced by our MRA confirm the high antiviral potency of these two drugs in vitro. Combined, this MRA approach may be applied for broader analyses of SARS-CoV-2-specific antivirals, including compound screenings and the characterization of selected drug candidates.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda