Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neurochem Res ; 47(11): 3344-3354, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35904698

RESUMEN

Glioma 261 (Gl261) cell-mediated neurotoxicity has been reported in previous studies examining glioblastoma (GBM), and the effects of physical exercise (PE) on this neurotoxicity have been poorly investigated. This study aimed to evaluate the effects of a PE program in animals with experimental GBM. Male C57BL/6J mice were randomized into sham or GBM groups and subjected to a PE program for four weeks. Gl261 cells were administered into the intraventricular region at 48 h after the last exercise session. Body weight, water and feed consumption, and behavior were all evaluated for 21 days followed by euthanasia. The right parietal lobe was removed for the analysis of glial fibrillary acidic protein (GFAP), epidermal growth factor receptor (EGFR), vimentin, C-myc, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), hydrogen peroxide, the glutathione system, and oxidative damage to proteins. The results revealed changes in the behavioral patterns of the trained animals, and no anatomopathological changes were observed in response to PE training. In contrast, animals with GBM subjected to PE exhibited lower immunoexpression of c-MYC, vimentin, and GFAP. Although experimental GBM altered the redox profile and inflammatory mediators, no significant alterations were observed after PE. In conclusion, our data provide consistent evidence of the relationship between PE and the improvement of tumorigenic parameters against the neurotoxicity of GL261 cells.


Asunto(s)
Glioblastoma , Glioma , Animales , Encéfalo/metabolismo , Receptores ErbB/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioblastoma/patología , Glioma/patología , Glutatión , Peróxido de Hidrógeno , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vimentina/metabolismo , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda