Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-38709324

RESUMEN

OBJECTIVES: There has been the assumption that whispering may impact vocal function, leading to the widespread recommendation against its practice after phonosurgery. However, the extent to which whispering affects vocal function and vocal fold oscillation patterns remains unclear. METHODS: 10 vocally healthy subjects (5 male, 5 female) were instructed to forcefully whisper a standardized text for 10 min at a sound level of 70 dB(A), measured at a microphone distance of 30 cm to the mouth. Prior to and following the whisper loading, the dysphonia severity index was assessed. Simultaneously, recordings of high speed videolaryngoscopy (HSV), electroglottography, and audio signals during sustained phonation on the vowel /i/ (250 Hz for females and 125 Hz for males) were analyzed after segmentation of the HSV material. RESULTS: The pre-post analysis revealed only minor changes after the intervention. These changes included a rise in minimum intensity, an increase in the glottal area waveform-derived open quotient, and the glottal gap index. However, no statistically significant changes were observed in the harmonic-to-noise-ratio, the glottal- to-noise-excitation-ratio, and the electroglottographic open quotient. CONCLUSION: Overall, the study suggests that there are only small effects on vocal function in consequence of a forced whisper loading.

2.
Sci Rep ; 14(1): 13132, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849382

RESUMEN

Voice production of humans and most mammals is governed by the MyoElastic-AeroDynamic (MEAD) principle, where an air stream is modulated by self-sustained vocal fold oscillation to generate audible air pressure fluctuations. An alternative mechanism is found in ultrasonic vocalizations of rodents, which are established by an aeroacoustic (AA) phenomenon without vibration of laryngeal tissue. Previously, some authors argued that high-pitched human vocalization is also produced by the AA principle. Here, we investigate the so-called "whistle register" voice production in nine professional female operatic sopranos singing a scale from C6 (≈ 1047 Hz) to G6 (≈ 1568 Hz). Super-high-speed videolaryngoscopy revealed vocal fold collision in all participants, with closed quotients from 30 to 73%. Computational modeling showed that the biomechanical requirements to produce such high-pitched voice would be an increased contraction of the cricothyroid muscle, vocal fold strain of about 50%, and high subglottal pressure. Our data suggest that high-pitched operatic soprano singing uses the MEAD mechanism. Consequently, the commonly used term "whistle register" does not reflect the physical principle of a whistle with regard to voice generation in high pitched classical singing.


Asunto(s)
Canto , Pliegues Vocales , Humanos , Femenino , Canto/fisiología , Fenómenos Biomecánicos , Pliegues Vocales/fisiología , Adulto , Sonido , Voz/fisiología , Fonación/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda