Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686395

RESUMEN

Granzyme B (GZMB) is a key enzyme released by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to induce apoptosis in target cells. We designed a novel fluorogenic biosensor which is able to assess GZMB activity in a specific and sensitive manner. This cleavage-responsive sensor for T cell activity level (CRSTAL) is based on a fluorescent protein that is only activated upon cleavage by GZMB or caspase-8. CRSTAL was tested in stable cell lines and demonstrated a strong and long-lasting fluorescence signal upon induction with GZMB. It can detect GZMB activity not only by overexpression of GZMB in target cells but also following transfer of GZMB and perforin from effector cells during cytotoxicity. This feature has significant implications for cancer immunotherapy, particularly in monitoring the efficacy of chimeric antigen receptor (CAR)-T cells. CAR-T cells are a promising therapy option for various cancer types, but monitoring their activity in vivo is challenging. The development of biosensors like CRSTAL provides a valuable tool for monitoring of CAR-T cell activity. In summary, CRSTAL is a highly sensitive biosensor that can detect GZMB activity in target cells, providing a means for evaluating the cytotoxic activity of immune cells and monitoring T cell activity in real time.


Asunto(s)
Apoptosis , Colorantes , Granzimas/genética , Línea Celular , Eritrocitos Anormales
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762404

RESUMEN

Murine cytomegalovirus (MCMV), and, in particular, recombinant virus derived from MCMV-bacmid pSM3fr, is widely used as the small animal infection model for human cytomegalovirus (HCMV). We sequenced the complete genomes of MCMV strains and recombinants for quality control. However, we noticed deviances from the deposited reference sequences of MCMV-bacmid pSM3fr. This prompted us to re-analyze pSM3fr and reannotate the reference sequence, as well as that for the commonly used MCMV-m157luc reporter virus. A correct reference sequence for this frequently used pSM3fr, containing a repaired version of m129 (MCK-2) and the luciferase gene instead of ORF m157, was constructed. The new reference also contains the original bacmid sequence, and it has a hybrid origin from MCMV strains Smith and K181.


Asunto(s)
Muromegalovirus , Animales , Humanos , Ratones , Muromegalovirus/genética , Citomegalovirus/genética , Modelos Animales , Control de Calidad , Proteínas Virales , Quimiocinas CC
3.
Hereditas ; 158(1): 41, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34732265

RESUMEN

BACKGROUND: Many transcription factors are involved in the formation of the brain during the development of Drosophila melanogaster. The transcription factor Earmuff (Erm), a member of the forebrain embryonic zinc finger family (Fezf), is one of these important factors for brain development. One major function of Earmuff is the regulation of proliferation within type II neuroblast lineages in the brain; here, Earmuff is expressed in intermediate neural progenitor cells (INPs) and balances neuronal differentiation versus stem cell maintenance. Erm expression during development is regulated by several enhancers. RESULTS: In this work we show a functional analysis of erm and some of its enhancers. We generated a new erm mutant allele by gene targeting and reintegrated Gal4 to make an erm enhancer trap strain that could also be used on an erm mutant background. The deletion of three of the previously analysed enhancers showing the most prominent expression patterns of erm by gene targeting resulted in specific temporal and spatial defects in defined brain structures. These defects were already known but here could be assigned to specific enhancer regions. CONCLUSION: This analysis is to our knowledge the first systematic analysis of several large enhancer deletions of a Drosophila gene by gene targeting and will enable deeper analysis of erm enhancer functions in the future.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc
4.
Viruses ; 16(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38932161

RESUMEN

Human cytomegalovirus is a ubiquitous herpesvirus that, while latent in most individuals, poses a great risk to immunocompromised patients. In contrast to directly acting traditional antiviral drugs, such as ganciclovir, we aim to emulate a physiological infection control using T cells. For this, we constructed several bispecific T-cell engager (BiTE) constructs targeting different viral glycoproteins of the murine cytomegalovirus and evaluated them in vitro for their efficacy. To isolate the target specific effect without viral immune evasion, we established stable reporter cell lines expressing the viral target glycoprotein B, and the glycoprotein complexes gN-gM and gH-gL, as well as nano-luciferase (nLuc). First, we evaluated binding capacities using flow cytometry and established killing assays, measuring nLuc-release upon cell lysis. All BiTE constructs proved to be functional mediators for T-cell recruitment and will allow a proof of concept for this treatment option. This might pave the way for strikingly safer immunosuppression in vulnerable patient groups.


Asunto(s)
Muromegalovirus , Linfocitos T , Animales , Linfocitos T/inmunología , Ratones , Muromegalovirus/inmunología , Muromegalovirus/fisiología , Humanos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Línea Celular , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
5.
Vaccines (Basel) ; 11(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851089

RESUMEN

Despite antiretroviral therapy (ART), immune exhaustion persists in HIV infection and limits T cell responses to HIV or other pathogens. Moreover, HIV infection results in the loss of pre-existing immunity. Here, we investigated the effect of blocking the PD-1 pathway on recall IFNγ responses to tetanus toxoid (TT) and measles virus (MV) antigens in HIV-infected persons on ART with prior TT and MV immunity. The ex vivo treatment of lymphocytes with anti-PD-1 and anti-PD-L1 antibodies significantly increased TT- and MV-specific IFNγ responses. The responses to TT and MV antigens alone or in combination with antibodies blocking the PD-1 pathway positively correlated with CD4 T cell levels. Furthermore, T cell PD-1 expression levels inversely correlated with recall IFNγ responses in combination with antibodies blocking the PD-1 pathway but not with IFNγ responses to antigens only. Our study suggested that targeting the PD-1 pathway may boost vaccine-induced pre-existing immunity in HIV-infected persons on ART depending on the degree of immune exhaustion.

6.
Viruses ; 14(3)2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35337058

RESUMEN

Only limited data are available regarding the immunogenicity of the BNT162b2 mRNA vaccine in HIV-1+ patients. Therefore, we investigated the humoral immune response after BNT162b2-mRNA vaccination or SARS-CoV-2 infection in HIV-1+ patients on antiretroviral therapy compared to HIV-1-uninfected subjects. Serum and saliva samples were analysed by SARS-CoV-2 spike-specific IgG and IgA ELISAs and a surrogate neutralization assay. While all subjects developed anti-spike IgG and IgA and neutralizing antibodies in serum after two doses of BNT162b2 mRNA vaccine, the HIV-1+ subjects displayed significantly lower neutralizing capacity and anti-spike IgA in serum compared to HIV-1-uninfected subjects. Serum levels of anti-spike IgG and neutralizing activity were significantly higher in vaccinees compared to SARS-CoV-2 convalescents irrespective of HIV-1 status. Among SARS-CoV-2 convalescents, there was no significant difference in spike-specific antibody response between HIV-1+ and uninfected subjects. In saliva, anti-spike IgG and IgA antibodies were detected both in vaccinees and convalescents, albeit at lower frequencies compared to the serum and only rarely with detectable neutralizing activity. In summary, our study demonstrates that the BNT162b2 mRNA vaccine induces SARS-CoV-2-specific antibodies in HIV-1-infected patients on antiretroviral therapy, however, lower vaccine induced neutralization activity indicates a lower functionality of the humoral vaccine response in HIV-1+ patients.


Asunto(s)
COVID-19 , VIH-1 , Vacunas Virales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , ARN Mensajero/genética , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda