Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3069-3084, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29960042

RESUMEN

Maintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organelle-based processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i. e. Cystic Fibrosis (CF) individuals and Smokers, display a characteristic lipointoxication signature, with excessive amounts of saturated PLs. Reconstitution of this signature in cellulo and in silico revealed that such an imbalance results in altered membrane properties and in a dramatic disorganization of the intracellular network of bronchial epithelial cells, in a process which can account for several OPD traits. Such features include Endoplasmic Reticulum-stress, constitutive IL8 secretion, bronchoconstriction and, ultimately, epithelial cell death by apoptosis. We also demonstrate that a recently-identified lipid-like molecule, which has been shown to behave as a "membrane-reshaper", counters all the lipointoxication hallmarks tested. Altogether, these insights highlight the modulation of membrane properties as a potential new strategy to heal and prevent highly detrimental symptoms associated with OPDs.


Asunto(s)
Membrana Celular/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Ácidos Grasos/metabolismo , Manitol/análogos & derivados , Ácidos Oléicos/farmacología , Fosfolípidos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Adulto , Anciano , Bronquios/citología , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/patología , Simulación por Computador , Fibrosis Quística/patología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ácidos Grasos/química , Femenino , Humanos , Masculino , Manitol/farmacología , Manitol/uso terapéutico , Persona de Mediana Edad , Simulación de Dinámica Molecular , Ácidos Oléicos/uso terapéutico , Fosfolípidos/química , Cultivo Primario de Células , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/citología
2.
Environ Sci Technol ; 51(9): 5172-5181, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28345896

RESUMEN

Polyethylene (PE), one of the most prominent synthetic polymers used worldwide, is very poorly biodegradable in the natural environment. Consequently, PE represents by itself more than half of all plastic wastes. PE biodegradation is achieved through the combination of abiotic and biotic processes. Several microorganisms have been shown to grow on the surface of PE materials, among which are the species of the Rhodococcus genus, suggesting a potent ability of these microorganisms to use, at least partly, PE as a potent carbon source. However, most of them, if not all, fail to induce a clear-cut degradation of PE samples, showing that bottlenecks to reach optimal biodegradation clearly exist. To identify the pathways involved in PE consumption, we used in the present study a combination of RNA-sequencing and lipidomic strategies. We show that short-term exposure to various forms of PE, displaying different molecular weight distributions and oxidation levels, lead to an increase in the expression of 158 genes in a Rhodococcus representative, R. ruber. Interestingly, one of the most up-regulated pathways is related to alkane degradation and ß-oxidation of fatty acids. This approach also allowed us to identify metabolic limiting steps, which could be fruitfully targeted for optimized PE consumption by R. ruber.


Asunto(s)
Polietileno/metabolismo , Rhodococcus/metabolismo , Secuencia de Bases , Biodegradación Ambiental , Oxidación-Reducción
3.
Environ Sci Technol ; 51(4): 1988-1997, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28112955

RESUMEN

With the ever-increasing volume of polymer wastes and their associated detrimental impacts on the environment, the plastic life cycle has drawn increasing attention. Here, eight commercial polymers selected from biodegradable to environmentally persistent materials, all formulated under a credit card format, were incubated in an outdoor compost to evaluate their fate over time and to profile the microbial communities colonizing their surfaces. After 450 days in compost, the samples were all colonized by multispecies biofilms, these latest displaying different amounts of adhered microbial biomass and significantly distinct bacterial and fungal community compositions depending on the substrate. Interestingly, colonization experiments on the eight polymers revealed a large core of shared microbial taxa, predominantly composed of microorganisms previously reported from environments contaminated with petroleum hydrocarbons or plastics debris. These observations suggest that biofilms may contribute to the alteration process of all the polymers studied. Actually, four substrates, independently of their assignment to a polymer group, displayed a significant deterioration, which might be attributed to biologically mediated mechanisms. Relevantly, the deterioration appears strongly associated with the formation of a high-cell density biofilm onto the polymer surfaces. The analysis of various surface properties revealed that roughness and hydrophilicity are likely prominent parameters for driving the biological interactions with the polymers.


Asunto(s)
Biopelículas , Polímeros/química , Plásticos , Suelo , Propiedades de Superficie
4.
Cells ; 10(4)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920685

RESUMEN

If polyunsaturated fatty acids (PUFAs) are generally accepted to be good for health, the mechanisms of their bona fide benefits still remain elusive. Membrane phospholipids (PLs) of the cardiovascular system and skeletal muscles are particularly enriched in PUFAs. The fatty acid composition of PLs is known to regulate crucial membrane properties, including elasticity and plasticity. Since muscle cells undergo repeated cycles of elongation and relaxation, we postulated in the present study that PUFA-containing PLs could be central players for muscle cell adaptation to mechanical constraints. By a combination of in cellulo and in silico approaches, we show that PUFAs, and particularly the ω-3 docosahexaenoic acid (DHA), regulate important properties of the plasma membrane that improve muscle cell resilience to mechanical constraints. Thanks to their unique property to contortionate within the bilayer plane, they facilitate the formation of vacuole-like dilation (VLD), which, in turn, avoid cell breakage under mechanical constraints.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Fosfolípidos/farmacología , Estrés Mecánico , Animales , Ácido Araquidónico/análisis , Línea Celular , Ácidos Docosahexaenoicos/análisis , Masculino , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Especificidad de Órganos/efectos de los fármacos , Ósmosis , Análisis de Componente Principal
5.
Dis Model Mech ; 13(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32303571

RESUMEN

The balance within phospholipids (PLs) between saturated fatty acids and monounsaturated or polyunsaturated fatty acids is known to regulate the biophysical properties of cellular membranes. As a consequence, in many cell types, perturbing this balance alters crucial cellular processes, such as vesicular budding and the trafficking/function of membrane-anchored proteins. The worldwide spread of the Western diet, which is highly enriched in saturated fats, has been clearly correlated with the emergence of a complex syndrome known as metabolic syndrome (MetS). MetS is defined as a cluster of risk factors for cardiovascular diseases, type 2 diabetes and hepatic steatosis; however, no clear correlations have been established between diet-induced fatty acid redistribution within cellular PLs and the severity/chronology of the symptoms associated with MetS or the function of the targeted organs. To address this issue, in this study we analyzed PL remodeling in rats exposed to a high-fat/high-fructose diet (HFHF) over a 15-week period. PL remodeling was analyzed in several organs, including known MetS targets. We show that fatty acids from the diet can redistribute within PLs in a very selective manner, with phosphatidylcholine being the preferred sink for this redistribution. Moreover, in the HFHF rat model, most organs are protected from this redistribution, at least during the early onset of MetS, at the expense of the liver and skeletal muscles. Interestingly, such a redistribution correlates with clear-cut alterations in the function of these organs.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ácidos Grasos/metabolismo , Síndrome Metabólico/metabolismo , Fosfolípidos/metabolismo , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Azúcares de la Dieta , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/patología , Fructosa , Lipidómica , Hígado/metabolismo , Hígado/patología , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miocardio/metabolismo , Miocardio/patología , Ratas Wistar , Factores de Tiempo
6.
PLoS One ; 9(2): e89044, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586495

RESUMEN

The F508del-CFTR mutation, responsible for Cystic Fibrosis (CF), leads to the retention of the protein in the endoplasmic reticulum (ER). The mistrafficking of this mutant form can be corrected by pharmacological chaperones, but these molecules showed limitations in clinical trials. We therefore hypothesized that important factors in CF patients may have not been considered in the in vitro assays. CF has also been associated with an altered lipid homeostasis, i. e. a decrease in polyunsaturated fatty acid levels in plasma and tissues. However, the precise fatty acyl content of membrane phospholipids from human CF bronchial epithelial cells had not been studied to date. Since the saturation level of phospholipids can modulate crucial membrane properties, with potential impacts on membrane protein folding/trafficking, we analyzed this parameter for freshly isolated bronchial epithelial cells from CF patients. Interestingly, we could show that Palmitate, a saturated fatty acid, accumulates within Phosphatidylcholine (PC) in CF freshly isolated cells, in a process that could result from hypoxia. The observed PC pattern can be recapitulated in the CFBE41o(-) cell line by incubation with 100 µM Palmitate. At this concentration, Palmitate induces an ER stress, impacts calcium homeostasis and leads to a decrease in the activity of the corrected F508del-CFTR. Overall, these data suggest that bronchial epithelial cells are lipointoxicated by hypoxia-related Palmitate accumulation in CF patients. We propose that this phenomenon could be an important bottleneck for F508del-CFTR trafficking correction by pharmacological agents in clinical trials.


Asunto(s)
Membrana Celular/metabolismo , Fibrosis Quística/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Ácido Palmítico/toxicidad , Mucosa Respiratoria/metabolismo , Adulto , Anciano , Membrana Celular/efectos de los fármacos , Células Cultivadas , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ácido Palmítico/aislamiento & purificación , Ácido Palmítico/metabolismo , Transporte de Proteínas/efectos de los fármacos , Mucosa Respiratoria/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda